
1

TestExpert version: 1.2.2
Document version: 1.2.2.1 (May 20, 2021)

This guide enables users to launch and become familiar with the TestExpert app and
its features. Since the app is a Windows Store app this guide does not focus on
installation: simply install it using Windows Store.

Topics

Introduction A general introduction and description of TestExpert.

Requirements What do you need in order to use TestExpert.

TestExpert features Step-by-step instructions to help you use TestExpert.

Reference information Guides to the Message description language and the
message template file format.

TestExpert

2

Introduction

Software organizations typically spend somewhere between 30 and 50% of the over-
all development time on testing. These are tremendous figures and its therefore hard
to understand why the problem of ‘software testing’ is still not getting the attention
from software practitioners which it deserves. Real testing is the most important
method to detect defects in the software design and is by far the only method which
can identify defects that occur when a system is executing.

TestExpert is a tool which gives an answer on some of the questions which come up
when dealing with software test:

• My application lives in a distributed environment and must implement a
communication interface towards a server/client. How can I test my software
against an external device which is still in development, doesn’t support all of
my features, or is too expensive to buy?

• How can I repeat previous tests when my software is getting into shape as a
result of incremental development steps?

• How much can I adapt test cases for different test scenarios?

The tool allows a software developer or tester to define all kinds of test scenario’s,
execute them, and evaluate the test results. It interfaces with the System Under Test
(SUT) through an IP network through which it exchanges message data either
directly on UDP or TCP, or through HTTP.

With any of the supported protocols the user can define any type of test scenario:
one where TestExpert will act as a client, one where it plays the server role, one
where it plays both roles.

You can use TestExpert in the following 2 cases:

Communication Protocol Simulation/Emulation

Without any extra components TestExpert can be directly used for communication
protocol testing and simulation. To do this the app allows you to define any protocol
message you want to run over UDP, TCP, or HTTP(S) using POST requests.
Message elements can be specified in both binary and text based format and can be
parameterized.

UDP/TCP/HTTP(S)
Test
Expert SUT

3

The definition of binary protocol messages is done through a message editor that
allows you to define information element data as: byte, word, integer, long, string.
You can also use expressions to create more complex data definitions.

Text based protocol messages can also easily be configured with the help of a built-
in message editor. This editor derives the message elements by parsing template
files containing a formal message syntax definition in ABNF notation.

Software component test and integration test

With an additional Remote Method Invocation Connector (RMIC) TestExpert can also
be used during software component test and integration test. The app then connects
to the RMIC component on the SUT. The messages that will be passed over the
UDP, TCP or HTTP(S) layer will then contain Remote Procedure Call data which will
be exchanged with the target components/services through the RMIC.

Test Scenarios

TestExpert presents itself as a GUI application in which the user enters the test
scenarios in the form of State/Event/Action notations.

SUT

UDP/TCP/HTTP

RMIC
T

Component 1

Component 2

Test
Expert

4

• ‘States’ represent the different conditions in which a test is.

• ‘Events’ represent the signals which are being returned by the application or
by TestExpert itself in a given state during the execution of the test.

• ‘Actions’ define the signals and the triggers which have to be delivered to the
application or to TestExpert itself when a given event occurs.

During the execution of the test all reactions which are coming from the system, are
being validated against what the tester is expecting in the momentary state of the
scenario. When the reaction is correct then the scenario continues by triggering new
actions in the system.

Execution of the test can both be done manually (one test at a time) or in batch mode
(multiple scenarios are running after each other).

The possibility of TestExpert to evaluate the reaction of the system during the test
and act accordingly, is considered to be a very important advantage when comparing
with more traditional testing tools. These tools typically only generate a fixed set of
signals without making any appreciation about what the system is supposed to be
doing with it.

An Open Environment

In order to allow the use TestExpert on all kinds of applications, the tool has
intentionally been designed around an ‘open’ concept. This means that the tool itself
has no built-in knowledge of the application under test. It is the user’s task to define
the interface protocols of the system that is to be tested.

By allowing the user to save the protocol elements and the test scenarios in so-called
‘solution’ files, all he protocol elements of a given application can be shared between
different developers and testers.

TestExpert is a UWP app and therefore only runs on Windows 10 machines. The
system under test of course can be any type of device as long as it supports UDP or
TCP as communication interface with TestExpert and HTTP (in component test
scenarios when RPC requests have to be exchanged through HTTP); i.e. Windows,
iOS, Android, OS X, Linux, IOT devices, embedded systems, etc.

What you also should know

TestExpert presents itself as a low cost solution for doing what has been described
above. That however doesn’t means that it can be a complete substitute for other,
more expensive tools that also position themselves in the software testing area.

With TestExpert you don’t have a lot of out-of-the-box components to immediately let
you start doing your tests. That means that there will be some effort involved from the
user to define the various scenarios and all the messages that need to be exchanged
with the external system.

5

TestExpert really works well for a programmer who is looking for a simple tool with
which his or her software can connect at the moment a component, a system or a
subsystem is ready for test. It is easy to setup, easy to modify, and intuitive.

The focus of the tool is in the low-level details of the actual testing process itself: the
user-defined events and actions in test scenarios, the execution of the scenarios, and
the possibility to adapt scenarios and messages to carry out alternate test cases.
This also means that there is only basic logging, that there is no concept of
traceability or test plans, and no management features.

6

Requirements

In order to use TestExpert in your test environment you need to take care of the
following:

• TestExpert, being a UWP app, requires a Windows 10 machine. It is installed
through the Windows Store.

• The system under test can be any device as long as it has the possibility to
connect with the TestExpert app using UDP, TCP, or HTTP(S). The IP
addresses, or the URL in case of HTTP(S), of the systems under test and the
target/listening port numbers are fully configurable within TestExpert.

Component test

If you want to use TestExpert for component test then you need to develop a Remote
Method Invocation Connector component and integrate/link it with your system. This
component deals with the communication channel with TestExpert (using HTTP
POST requests and HTTP responses), the de-serialization/serialization of method
requests and responses, and the invocation of your component methods.
Depending on whether your programming environment supports reflection or not this
can be easily done or require some component-specific effort.

On the TestExpert website you can find a small library that implements a Remote
Method Invocation Connector you can use when you are developing a Windows 10
UWP app. Connectors for other environments will be added when they become
available from people willing to share their implementation.

Protocol Test

If you want to use TestExpert to emulate the communication protocol of a remote
device then nothing else is needed. As already described UDP, TCP and HTTP are
currently supported.

Network security protocols

Security at the IP layer (e.g. IPSec) or the upper layer (e.g. TLS) for UDP and TCP is
considered for a possible later version.

HTTPS is supported in scenario’s where TestExpert is acting as a HTTP client; i.e. is
sending HTTP request messages and expecting response messages.

When acting as a server only HTTP is supported.

7

Features

You can get detailed information about using TestExpert by selecting topics from the
following list. Novice users should start with the items in the 'Basic principles' list:
start with the first item, then the next, and so on. If you know the general concepts
then you can get more detailed information about specific items by selecting a topic
from the 'Advanced usage' list.

Basic principles

Advanced usage

Topic Description

The concept of scenarios An explanation about what a scenario is and how it is central
in the test concept.

Solution file TestExpert stores scenarios and messages in a single
solution file. The file can be used on any device that is
running TestExpert.

Managing scenarios A description about how you can create a scenario.

Managing messages An explanation about the type of messages supported in
TestExpert and how to add them.

Running a scenario A description how you can execute a scenario

Topic Description

Scenario editor The Scenario editor lets you add, delete, and modify states,
events, and actions in a scenario.

Message editor The message editor lets you define the content of any type
of message; binary or text based.

Message properties editor With the Message properties editor you can configure some
message properties and can verify whether the content is
correctly specified.

Managing message
elements

Message information elements are an additional feature of
TestExpert to make it possible to include re-usable
information in messages.

TestExpert variables You cannot only define fixed content data in messages but
also use data from Static variables and Runtime variables.

Solution properties page This page lets you define some global solution settings like:
endpoints, message encoding, etc.

8

The Concept of Scenarios

A characteristic of all kinds of testing, whether it is software component test, software
integration test, or just testing of interfaces and protocols outside of a system, is the
sequential nature of the different steps, events, and actions that have to occur during
the test. TestExpert deals with this by presenting a concept to the user where he or
she must create test scenarios in the form of Finite State Machines (FSM). A
scenario can be:

• Send a message to the target.

• Wait for a response message coming back.

• Validate the response.

• If the response is accepted, then send another message and wait for the next
event.

• If the response is invalid, start a timer and stop the test after the timer expires.

Test scenarios are edited using TestExpert’s Scenario Editor. The editor lets the user
develop, modify and look at the scenario in a user friendly way.

A scenario contains: states, events, and actions.

• A state represents a halting point during execution of a test where TestExpert
waits for an event to occur.

• An event is an internal or external trigger which happens at a certain moment
within the momentary state.
Events can be: an incoming message, a timeout, etc.. TestExpert allows you
to specify the characteristics of these events: e.g. the incoming message
contents, the timeout value, etc.
With regard to incoming messages, TestExpert also allows you to extract
values from the message and save them in so called ‘run-time variables’. You
can then import these variables within outgoing message definitions or use
them to define conditional actions.

• An action constitutes a process of doing something.
This can be: sending of a message, starting of a timer, changing the state, etc.

9

Also here, TestExpert will allow you to define the message contents, the
timeout value, etc.
Actions also come with a Condition property with an expression that is
validates in order to see if the action must execute or not.

Scenarios are presented (and specified) graphically on the screen in a kind of
horizontal tree display with the states on the left, the events branching from the states
and the actions branching from the events.

List of supported events

Event Description

Start An internally triggered event that occurs when
execution of the scenario is initiated.

Timeout An internally triggered event that occurs when a timer
that is started as a result of a Start timer action has
expired.

Incoming message An event that occurs when a message is received on
the communication channel. The event is validated by
checking if the assigned message matches the
received data.

The assigned message (name, content) is configured
by the user with the help of either a Basic message
editor or a Template message editor.

List of supported actions

Action Description

Start server This action starts a communication listener service on
a configured endpoint (network interface, listening
port, etc.).

Send message This action sends a user defined message out over
the communication channel. The target address can
be specified to be the default connected address or a
specific one.

The message itself (name, content) is configured by
the user with the help of either a Basic message
editor or a Template message editor.

Start timer The Start timer action lets you tell the system to start
a configurable timer.

Stop timer This action stops any timer that is running.

Set state The Set state action changes the current running
scenario/FSM state to another state.

10

Give a prompt Give a prompt allows you to bring a message up.
Execution of the scenario is paused until the prompt
is dismissed.

Call scenario This action gives you the possibility to pause the
currently running scenario, then execute another
scenario, and later on (when the other scenario has
finished execution) proceed with the main scenario.

Assign variable Assign variable is an action that allows you to assign
a value to a user-defined run-time variable. The
variable can be used in a message definition.

Stop This action stops execution of the scenario.

Execution of a scenario

When the user requests to start a scenario TestExpert will open a Scenario

Execution View. Within that view the user can then request to run the scenario.

When execution is requested the state is set to Idle and a Start event is internally

triggered.

• In a Client scenario the FSM will have actions assigned to the Start event, like:

Send message (to send a message to the target), Start timer (to control

receipt of a response, and Set state (to process the response message).

TestExpert will handle those actions one after the other.

When all actions are executed and the scenario is not stopped the Scenario

Handler waits for a next event to occur.

The process then repeats as soon as a new event comes in that matches the

scenario state.

• In a Server scenario the FSM must also implement the Start event and attach

a Start server action to it. This will instruct TestExpert to start a Server/Listener

service on the configured listener endpoint.

Because the target system in this setup will have to take the initiative to run all

other scenario actions, the next thing you will have to do is to attach an

Incoming message event to the scenario. You can do that on the Idle state

and trigger execution of the scenario from there or you might introduce a new

state that is set after the server is started and attach the message event to this

new state.

When the target system then sends the message, TestExpert checks whether

it matches the Incoming message event and proceeds with executing the

attached actions.

11

During execution of the scenario the view will be populated with information about

everything that happens. Valid messages are shown in green, invalid and

unrecognized messages are shown in red.

Reuse of communication connections

When you run a scenario you have the possibility to re-use a possibly previously

established communication channel to a target endpoint or create a new one. In

order to allow such re-use TestExpert therefore will never automatically disconnect

connections after a scenario has stopped.

The same is true with incoming server connections. TestExpert will keep all listening

services that have been started active including all remote client connections.

The remote devices of course are free at any time to close their connection when

they choose so. TestExpert will correctly handle that.

12

Solution File

A TestExpert solution maintains scenarios, messages, static variables, and various
properties in a single .txprt solution file.
The .txprt file holds all the text-based information in XML format. This implies that,
depending on how many scenarios and messages are defined for the solution, the
file can grow from relatively small to quite big.

ABNF files that are used as template files for defining text based messages are
separate files. When a solution uses them then the solution file only contains a
reference to the actual physical ABNF file on a computer.

Create a new solution

You can create a new, blank solution when you are on the Home page of TestExpert.
You get there automatically when TestExpert is started or by tapping on the Home
button.

On the Home page, tap the New solution menu button.

A dialog window pops up where you must assign a name for the solution file and the
folder where the file must be saved.

The solution view is then presented with a navigation menu showing on the left side.

13

The navigation menu lets you choose from the following items:

Icon Menu Description

Home Tap this menu item to go to TestExpert’s Home

page

Save Tap this menu item when you want to force
TestExpert to save the solution file.

Properties The Properties menu item opens the Solution
properties page.

Scenarios The Scenarios menu item lets you create, modify,
rename or delete scenarios. You can group
scenarios into folders and subfolders.

See the section Managing scenario’s for more detailed
information.

Outgoing messages

Incoming messages

With these menu items you can create, modify,
rename or delete outgoing resp. incoming
messages.

Information about defining messages can be found
in the Managing messages chapter.

Outgoing message elements

Incoming message elements

These 2 menu items give you the possibility to
define outgoing resp. incoming information elements
for message of which the content is configured using
the Raw message editor . These are elements which
contain data values that you define once but include
in multiple messages. See section Managing

message elements for a full description.

Static variables Tap this item to open the Static Variables Editor. It
allows you to create, modify and delete variables
and assign values to them.

Runtime variables Tap this item to open the Runtime Variables Editor.
You can then have a look at the variables that have
been created dynamically while running a scenario.

Settings Tap this item to open the Runtime Variables Editor.
You can then have a look at the variables that have
been created dynamically while running a scenario.

If TestExpert is running in a small window then the navigation panel will be in a
collapsed state. You can toggle between a full and a collapsed panel by tapping the
top Menu button.

14

Open an existing solution

You can open an existing solution when you are on the Home page of TestExpert.
You get there automatically when TestExpert is started or by tapping on the Home
button.

You then have the option to select a solution from the recently opened files list or
browse for a file by tapping the Open file action item.

Save solution

To save an open solution simply tap or click the Save menu button in the navigation
panel.

Change solution properties

In addition to scenarios, messages and static variables a solution file also contains
some global properties. You can configure these by tapping or clicking the Properties
menu button.

This opens the Solution properties page.

Open solution items

You must use the navigation pane to find folders and items within any of the main
solution menu items.

To open the Static variables and Runtime variables items simply tap the
corresponding menu item.

To open all other solution items (like those belonging to Scenarios, Outgoing
messages, ..) you must first tap on the menu item to reveal the first level of folders
and items. When an item is part of a subfolder then you have to proceed by tapping
its parent folder until the item is revealed.

15

Tap then on the solution item to open the associated editor (a Scenario editor,
Message editor, etc.) in TestExpert’s ‘documents’ pane. This pane hosts all open
‘documents’ either as individual tabs in the ‘main’ tab area (to the left) or as a single
quick navigation tab in the ‘preview’ tab area (to the right).

Tabs area

Open solution items each have their own tab item in the tabs area. Only 1 item is
shown at a time.

Note that a single tap in the navigation pane brings the item’s editor in the ‘preview’
tab area. When you select another item afterwards then the previously shown item
disappears and the new item takes its place. The ‘preview’ feature is there to allow
for quick navigation through different solution items.

If you want an item to be in a persistent tab in the ‘main’ tab area then you can either
double tap the item in the navigation pane or click somewhere in its editor.

There is no limit on how many solution items you can add to the ‘main’ tabs area.
However, when there is insufficient space in the tab item’s header bar, TestExpert
will only show the most recently used tabs. The others are still there but hidden.

To reveal an item you have various options:

• Tap on the item’s tab header

16

• Select the item in the navigation panel.

• Select the item in the tabs list. You can open the tabs list by tapping the list
button to the right of the tab items bar.

You might want to use this method to show an item of which the tab item’s
header is hidden due to space restrictions.

To close an item simply tap on the close button in the tab header itself. On an
inactive tab the close button comes up when you place the mouse on its header.

17

Managing scenario’s

To create a new scenario tap the More options icon to the right of the Scenarios
menu item in the navigation panel.
Alternatively you can also right-click somewhere on the menu item bar.

Select Add scenario on the flyout menu.

TestExpert then adds a new scenario to the solution with a default name (change the
name into something meaningful) and 2 pre-defined states: Idle and Any.

On the right side the Scenario editor is showing the new scenario/FSM.

The 2 pre-defined states are mandatory and can’t be deleted:

State Description

Idle This state represents the initial state of any
scenario that is not yet running.

Any This state can be used to assign events that
are expected to occur in any state and for
which you want to execute common actions
when these events happen.

Use the Scenario editor now to setup your scenario with states, events and actions.

Folders and Subfolders

It is also possible to create a new scenario in a folder (or subfolder). To do that you
must first create the folder/subfolder by selecting Add folder on the main Scenarios
menu item or on an already existing folder item.
Then select the folder, bring up the flyout menu (using the More options icon or a
right click) and tap Add scenario on the flyout menu.

18

Scenario editor

TestExpert’s scenario editor allows you to setup and change a simulation scenario.
You automatically invoke the editor each time you create a new scenario (see Create
a scenario) or by opening an already existing scenario (see Open solution items).

Scenarios are edited interactively by the user by employing a set of buttons that are
shown on the top tool bar, or selecting appropriate menu items from TestExpert’s
menu bar.. All buttons are logically arranged in groups.
The whole editing process keeps track of which item the user is editing by only
enabling those tool bar buttons (showing them in full color) which are allowed to be
pressed given a particular selected scenario item.

Adding States

A new State is added by pressing the New state button on the top toolbar.

TestExpert will pop-up a dialog window in which you can enter the name of the new
state and a short description.

State name

When entering a new state, you can choose whatever name you want except Idle
and Any.

Examples

Releasing
Waiting_For_REL
Waiting for any message

Note that TestExpert has already pre-defined 2 states for you: state Idle and state
Any.

19

• You must have the Idle state in your scenario because TestExpert assumes
that this is the starting state for any test you want to conduct.

• As an option, you can also make use of the Any state in your scenario. This
state has a special meaning for TestExpert during testing. When the test is
running, TestExpert will always try to match an incoming event against the Any
state when the normal match against the momentary state fails. This allows
you to associate a set of events which you expect to happen in every state to
the Any state.

Description

A description is optional. It is not used by TestExpert itself.

Adding additional states

You can of course create multiple states in the scenario by repeating the above
process. Any new state is automatically added after the last created state.

Although the order in which the state definitions appear is unimportant for TestExpert,
you can move a state before or after another one by selecting the state (by clicking
on it) and dragging the state rectangle to the wanted position.

State properties editor

You can at any time modify the selected state’s name and description by means of
the State properties editor that is also presented on the right side in case the view
window is wide enough. If that is not the case then either tap the More menu button
or right click on the state and select Properties in the flyout menu.

The State properties editor then pops up as a separate view page.

20

You can close the properties editor and go back to where you were by pressing the
top left Back button.

Adding Events

The TestExpert scenario concept defines events as being internal and external
triggers that happen in a given state. Events therefore are FSM elements that are
attached to states.
You add them by first selecting the state (by tapping somewhere on the state
symbol).
Once the state has been selected you can attach a specific event either by
tapping on one of the event buttons in the top toolbar or tapping the menu button on
the state and then selecting the event in the flyout menu.

You have the choice to attach 3 type of events to the state:

Event Description Event properties

Start This event denotes an internally generated
TestExpert trigger to start execution of the
scenario.

When you select this event a dialog pops up
in which you can enter a description.

Description

Optional.

21

Incoming
message

The purpose of the Incoming message event
is to define an incoming message which
TestExpert can expect from the target. When
the scenario is running and has entered the
given state, TestExpert will validate each
incoming message in that state against the
contents of the message which you have
defined here.
The Incoming Message event can be
attached to any state in the scenario. When
attached to the Idle state, it typically indicates
that TestExpert waits for an incoming
message, sent by the target under test, to
start the scenario activities.

When attaching this event you will be given
the possibility to select the message, assign
an optional source address and provide a
description.

Message assignment

To select your message tap the dropdown
box. It allows you to pick any of the already
registered messages but also allows you to
create the message at this point in time if that
hasn’t been done yet.

Note: If you create the message here you still
have to specify the message content later on
by bringing up the Message Editor.

Source address

When the source address is left empty then
TestExpert will treat any incoming message
that occurs in the state as being a candidate
for a match.

When the source address is defined then
TestExpert will only match incoming
messages that have a source address equal
to the specified one.

The format of the source address is a network
host address; e.g. An IP address.

Description

Optional.

22

Timeout This event indicates a possible timeout that
can occur in the state to which the event is
attached.

Description

Optional.

You can assign multiple events to the state by repeating the above process. Any new
event is automatically added after the last event.

If you want to move an event before or after another one, then you can do this by
selecting the event (by tapping on it) and dragging the mouse to the wanted position.

Event properties editor

As with states you can also here modify the event properties (name, description, etc.)
at any time by means of an Event properties editor. The editor is automatically
displayed on the right side of the window when an event is selected and the view
window is wide enough. If the windows is too narrow then tap the menu button on the
event and select Properties in the flyout menu.

Adding Actions

Actions define what TestExpert must do when the scenario runs and an event comes
in which matches one of the events that has been attached to the current state of the
scenario.
Before you can add an action you must of course first select the event to which you
want to assign the action. You can do this by tapping somewhere on the event
symbol. Select then the requested action either by tapping the respective button on
the toolbar or tapping the menu button on the event and selecting the action in the
flyout menu.

The following actions can be created:

23

Action Description Action properties

Send
message

Select this action when you want to respond
to the event by sending out a message.
You will be prompted to indicate which
message you want to send out, define a
possible condition and target address, and
you can add some description.

Message assignment

To select your message tap the dropdown
box. It allows you to pick any of the already
registered messages but also allows you to
create the message at this point in time if that
hasn’t been done yet.

Condition

You can provide a TestExpert expression
here. If you do so then the action will only be
executed when the expression evaluates to
true or returns a non-zero numeric value.

Example:

@var(RcvdToken) == 0x12

Target endpoint

Tap the dropdown list to choose to which
endpoint you want to send the message. You
have 2 options:

1. When you select Default endpoint then
TestExpert will send the message through
what is called the default communication
channel. Which channel that is will be
depending on how the action is triggered:

• When the action is triggered by a Start
or Timeout event then this is the
channel which TestExpert will
create/reuse for the default target
endpoint which you have to select
before starting the scenario.

• When the action is triggered by an
Incoming message event then the
channel is the one through which the
incoming message was received.

2. When you select a specific target
endpoint then TestExpert will create/reuse
the connection towards that specific
endpoint and use that one to send the
message out.

The endpoints listed in the dropdown are
normally configured separately by opening
the Solution Properties view but you can also

24

add a new endpoint here by selecting New
endpoint… in the dropdown list.

Description

Optional.

Start
timer

With this action you can request TestExpert
to start a one-shot timer. You will be
prompted to define the timeout value, a
possible condition and some description.

Timeout expression

You can use a TestExpert expression to
define the timeout value (in milliseconds.)

Examples:

1000

(@var(Step) * 2) + 1000

Condition

See above.

Description

Optional.

Stop
timer

This action stops any running timer. When
selecting this action you will be prompted to
define a possible condition and some
description.

Condition

See above.

Description

Optional.

25

Set state This action modifies the state of the scenario.
You will be asked to define the new state, a
possible condition and some description.

State selection

Select the new state by tapping the State
dropdown box and tapping on the requested
state. If the state isn’t defined yet then you
can also choose to create one here.

Condition

See above.

Description

Optional.

Prompt The Prompt action tells TestExpert to pause
execution of the scenario and present a
prompt text on the screen. You will be asked
to enter the prompt text, a possible condition
and an optional action description.

Prompt

Enter the text you want to show when the
action triggers.

Condition

See above.

Description

Optional.

26

Call The Call action allows you to interrupt the
current scenario and execute another. When
the called scenario terminates, TestExpert
continuous with the original scenario where it
left.
You will be asked to enter the name of the
scenario, a possible condition and an optional
action description.

Scenario

Select the scenario that has to be called by
tapping the dropdown box. Pick any of the
already registered scenarios there.

Condition

See above.

Description

Optional.

Assign With the Assign action TestExpert can be told
to assign a value to a user defined variable.
The variable will be created (if it doesn’t exist
yet) in TestExpert’s runtime variables list.
You will be asked to enter the name of the
variable, an assignment expression, a
possible condition and an optional
description.

Runtime variable

You can assign any name you want to the
variable. It is only when the scenario is
actually running and the action is being
triggered that TestExpert will either create the
variable as a new run-time variable or use an
already previously created run-time variable
with the same name.

Value

You can use a TestExpert expression to
specify the value to be set.

Examples:

“john.doe”

(@var(Step) * 2) + 1000

Condition

See above.

Description

Optional.

27

Start
server

This action can be used to start a server
service in TestExpert. You can trigger the
action with any event in any state of the
scenario but you will need it for sure with a
Start event in state Idle when TestExpert
must act as a server when the scenario runs.

Listener endpoint

Tap the dropdown list to select either the First
configured listener endpoint or a specific
endpoint.

The endpoints listed in the dropdown are
normally configured separately by opening
the Solution Properties view but you can also
add a new endpoint here by selecting New
endpoint… in the dropdown list.

Condition

See above.

Description

Optional.

Stop The Stop action instructs TestExpert to stop
executing the scenario.
You will be asked to enter a possible
condition and an optional action description.

Condition

See above.

Description

Optional.

You can assign multiple actions to the event by repeating the above process. Any
new action is automatically added after the last action. If you want to move an action
before or after another one, then you can do this by selecting the action (by clicking
on it) and dragging the action rectangle to the wanted position.

Action properties editor

As with states and events you can also here modify the action properties at any time
by means of an Action properties editor. The editor is automatically displayed on the
right side of the window when an action is selected and the view window is wide

28

enough. If the windows is too narrow then tap the More menu button or right click on
the action rectangle and select Properties in the flyout menu.

Additional actions on scenario items

Besides the above ‘Add’ actions (add State, Event, Action) there are some additional
operations you can do for scenario items. You can reveal these commands either by
tapping on the menu button in the item rectangle (you must first select the item) or by
doing a right-click on the item.

Import an already existing scenario

The «Import» button at the top of the scenario editor lets you import a complete
scenario that already exists in the solution file.

Command Description

Delete Use this command to delete a scenario item (state, event, or
action). Of course, deleting a state or an event will also
remove the attached events or actions.

Note: Be careful since there is no un-delete possibility.

Properties Use the Properties command to open the item’s Properties
editor in a separate view page.

Rename The Rename command is only supported for a State item.

Message The Message command is only supported for Incoming
message events and Send message actions. It allows you to
open a tab view to look at or modify the message content.

Cut, Copy and Paste Not supported yet.

29

All definitions that already existed prior to the import will be cleared and all definitions
of the scenario that is being imported will be copied.

Saving the scenario

You must be aware that any change you make while editing is done on a temporary
copy of the original scenario. In order to make the changes persistent you should
therefore save the updated scenario.
You can do that by tapping the Save button in the navigation menu or by tapping the
Yes button in the dialog that comes up when you close a scenario that has unsaved
changes.

In both cases the update in the solution file is done for all items in the tabs area that
have unsaved changes.

30

Managing messages

This chapter explains how TestExpert lets you add and adapt messages in your
solution. Because scenarios have to treat messages differently depending on
whether they are outgoing or incoming you will notice that the navigation panel
comes with an Outgoing messages group and an Incoming messages group.
In case however you don’t use scenario’s and simply want to create and send
messages out to a target device by yourself then the Outgoing message group is the
place where you have to define and manage your messages.

Create a message

To create a new message select the Outgoing messages or Incoming messages
group menu item in the navigation panel or a subfolder in it.
Tap on the More options icon to the right of the selected item.
Alternatively you can also right-click on the group menu item or on the folder.

Select Add message on the flyout menu.

TestExpert then adds a new message to the solution with a default name. Change
the name into something meaningful.

You can then define the message content using the Message editor that is added by
means of a tab item in the tabs area.

Modify a message

Select the message in the navigation panel.

Note: As with scenarios it is also possible to create a new message in a folder (or subfolder).
To do that you must first create the folder/subfolder by selecting Add folder on the main
Outgoing messages or Incoming messages menu item or on an already existing folder item.

31

Modify the message using the Message editor.

Rename a message

You can rename a message in a couple of ways:

• Tap twice on the message in the navigation panel. A small edit box is shown
where you can change the name.

• Select the message in the navigation panel and tap on the More options icon

to the right of the message.
Select Rename.

• When you have the Message properties editor open you can also rename the
message by simply changing the name in the upper Name edit box.

32

Message editor

The Message editor provides a view that allows you to define the content of a
message.

It consist of a number of parts:

1. A top bar holds a number of action buttons that allow you to do things like: copy,
paste, import, send the message, and look at some message properties.

2. Right under the command bar there is Template dropdown box that lets you
choose how you want to define the content of the message. Depending on which
template you select a specific editor will come up. You can choose from:

• Raw – This is a built-in template that gives you full freedom with respect to
what kind of data has to go into the message. The message editor allows you
to enter the data as: one or more byte values, word, integer, long, string, or a
combination of those. You can also make use of expressions supporting
arithmetic and logical operators to define more complex data structures.

• HttpMessage – This template lets you define both HTTP request and response
messages. A powerfull HTTP message editor is available which allows you to
define all the HTTP message properties (method, status code, headers, body,
etc.) in a user-friendly way.

• An ABNF template file – ABNF template files are text files which describe the
structure and format of the messages you want to deal with. The files use a
well-known formal message syntax notation that is specified by the IETF in
RFC5234 (Augmented BNF for Syntax Specifications). ABNF lends itself

33

primarily for text-based message protocols.
TestExpert comes with an ABNF parser and editor which presents a given
message layout and possible editable parts in a user-friendly way.
Note: If you want to make use of ABNF template files to describe a message
you must add them first to your solution by opening the Solution properties
page.

3. The biggest part on the screen is taken up by the actual editor. There are current
3 type of editors:

o Raw message editor
o HTTP message editor
o ABNF message editor

Copy and paste action

You can easily copy the content of a message (or a message element) into another
message (or message element) by using the Copy and Paste command buttons.

• Open the message (or element) you want to copy and tap or click the Copy
button.

This puts the content in the clipboard.

• Then, open the message that needs to receive the copy and tap or click the
Paste button.

Notice that the action completely overwrites the content (if any) with the source data.

Copy/paste is allowed between any type of message (e.g. copy outgoing message
data to an incoming message) but not between a message and a message element.
After having received the copy the template property of the message is set to the one
of the source message.

Since the copy is in the clipboard you can repeat the paste action on other
messages.

Import action

The import action also lets you copy the content of any other message (or message
element) into the message that is being edited. This is different from copy/paste since
it doesn’t use the clipboard but instead asks you to select the source message (or
message element) from a list.

Note: When the window/display is wide enough then TestExpert also brings up the Message

properties editor on the right side. The Properties action button on the top command bar is
then hidden.

34

Notice also here that the action completely overwrites the content (if any) with the
source data and that, in case of a message, the template property is set to the one of
the imported message.

Send action

It is possible to send the message data to one of the endpoints that has been
configured as a target endpoint for the solution.

If you want to do that tap or click the Send button.

This opens the Send Message view on top of the tabs area where you can select the
target endpoint/host and request TestExpert to send the message.

The Target endpoint to use dropdown box lets you select a target endpoint. As a

default TestExpert will preselect the first configured endpoint. Target endpoints must

be configured in the Solution properties view.

Tap or click the Send message button to send the message out.

35

The system will then establish a connection to the selected endpoint (if it doesn’t

exist yet), format the message definition into a set of bytes, and then actually send

the message.

Note: the encoding of the message payload is depending on the type of message:

• With a Raw message the encoder uses the endianness and string encoding

format (i.e. UTF8) that is configured in Solution properties.

• With a HTTP and ABNF type of message the text is encoded using UTF8.

After the message is sent TestExpert itself will not close the connection for the

following reasons:

• By keeping the connection open the system can show you possible messages

that are coming back (e.g. as a response) from the target system.

• It allows you to send successive messages without the overhead of always

building up a new connection.

If you want you can force a connection that is active for the selected target endpoint

to close by tapping the Close connection button.

To clear the history in the report window tap the Clear history button.

Properties action

The Properties action button is only shown when TestExpert runs in a small window.
Tap or click on it to popup the Message properties editor.

36

Raw message editor

The Raw message editor allows you to define messages at the lowest possible octet
level. The editor lets you define the content of all type of messages: messages that
consist of just a set of octets, messages that contain strings that are delimited in
some way, or messages that contain both octets and strings.

The editor provides you with a view which presents a message table consisting of 3
columns.

Example:

The purpose of the message table is to present the message content as a set of
protocol data elements (octets, strings, ..). Although it is theoretically possible to
define the whole message using a single row of data, this is not what you should do.
Indeed, multiple rows can be created which allow you to specify the message as
consisting of a set of different information elements. There is no limit in TestExpert on
the number of rows that you can use.

The columns:

• The first column simply contains the row number.
• The second column of each row, called Field description, doesn’t need to have

content. It can be used to clarify the meaning of a row/definition for the user.
• The third column, called Definition, is used to hold the definitions of the actual

message information elements.
In the case of an incoming message it can also contain assignment
statements to save received data values in runtime variables.

When the message is initially created a single empty row is added to the table.

37

Defining content

The content of a message must be defined by entering values in the cell(s) of the
definition column. To do this TestExpert comes with a Message description language
that allows you to enter the content data in various ways. The next couple of
examples should give you an idea. For a full description of all possibilities you should
read the reference text in the Message description language chapter.

Example 1 - Using simple string and value statements.

Assume the following content in the table:

Field description Definition

A string "--begin--"

A byte 1

A byte and a word 0x20 0x0010

A string "--end--"

The resulting message content will be:

Note that byte ordering will be important when using the Raw message editor. In the
above example the 0x0010 value will be sent out as 0x00 followed by 0x10. You can
however change the ordering for word, integer and long values by setting the
Endianness property in the Solution properties page to little endian or big endian.

Example 2 - Using value modifiers and expressions.

Assume the following content:

Field description Definition

A word (16 bits) 1w

An expression (0x20 + 0x02)

Conversion to an
integer (32 bits)

(0x20 + 0x02)@int

The resulting message content will be:

38

Example 3 – Using variables

In addition to scenarios and messages TestExpert also allows you to define one or
more variables. They can help you when you have to specify certain, more or less
fixed values in multiple messages or when you want to include a value that is
extracted from the data content of a received message.
A variable consists of a name and a value and TestExpert allows you to reference
them in the various Message editors.

Assume that the solution contains 4 variables ‘cr’, ‘lf’, ‘crlf’, and ‘block’ with the
following values assigned to them:

Variable name Definition

cr 0x0D

lf 0x0A

crlf @var(cr) @var(lf)

block 10 (10 + @var(lf)) 30 "ABC"

Assume next that the content definition of a message looks as follows:

Field description Definition

Variable ‘cr’ @var(cr)

Variable ‘crlf’ @var(crlf)

Variable ‘block’ @var(block)

The resulting message content will then be:

Note: The use of variables is described in full detail in the chapter TestExpert
variables.

Example 4 – Using Outgoing and Incoming message elements

When you define a message using the raw format template it might be convenient to
make use of separate re-usable Message elements and include those as fields at a
given place in the message. See Managing message elements for more details.

The next table shows the definition of a Message element called ‘UserName’.

:

Field description Definition

Header "Name: "

39

Name passed as parameter @this.parm(1)

Field terminator @var(crlf)

Note in the above table that the ‘UserName’ information element is not a constant
field but that it assumes that the ‘caller’ will pass a parameter value holding the
name.

The message in which we want to include the element then looks as follows:

Field description Definition

Request "REGISTER" @var(crlf)

UserName field @element("ome/UserName", "John.Doe")

Message terminator @var(crlf)

The ‘UserName’ field is included by making use of the @element function. The first
argument of this function is the pathname of the element that must be included. The
second argument is the first (and only) parameter expected by the element.

The resulting message content will then be:

Editing the message table

Edit cell content

To enter/change text in any of the description and definition table cells tap or click in
the cell. A text box comes up with a white background. It comes with a context menu
with support for copying and pasting text, and (in a definition cell) for inserting
Message description language statements.

The "clear all" button in the text box lets a user quickly delete all text that has been
entered.

When a cell is in edit mode pressing the Up/Down navigation key will let you
immediately edit the content of the cell in the previous/next row.

Pressing the Tab key will bring up the cell to the right of the current cell. When on the
last cell of a row, press the Tab key twice to bring up the first cell on the next row.

To bring up the context menu right-click on the cell. The commands you will see are
dependent on which cell you have clicked. For a ‘description’ cell the usual Cut,

40

Copy, Paste and Select All commands are presented. For a ‘definition’ cell you will
see extra commands to insert Message description language statements.

Tap or click on one of the statements to insert the statement in the cell. In case the
chosen statement needs additional input parameters (like: a message, a variable
name, etc.) you can again right-click on the parameter to get a new context menu
that helps you with selecting the value of the parameter.

Inserting rows

To insert a new row before a given row, fully select the given row by tapping or
clicking in the small row number cell. Then add the new row using one of the
following options:

• Right-click and select Insert in the flyout menu.

• Press the Ctrl + + (plus sign) key or the Ctrl + Shift + + (plus sign) key.

In any case the new row is added right above the selected row.

Deleting rows

To delete a row, select the row to be deleted by tapping or clicking in the small row
number cell. You can then delete the selected row using one of the following options:

41

• Right-click and select Remove in the flyout menu.

• Press the Ctrl + - (minus sign) key or the Ctrl + Shift + - (minus sign) key.

Cutting and copying rows

You can cut/copy rows and paste them in a given row (i.e. overwrite the row). There
are 2 possibilities available to do that:

• Right-click on the row you want to cut/copy and select the Cut or Copy
command.
Then right-click the row that needs to get the content of the cut/copied row and
select Paste in the flyout menu.

• Select the row you want to cut/copy and press the Ctrl + X / Ctrl + C key.
Then select the row that must be overwritten and press the Ctrl + V key.

After you copied a row the original row remains ‘selected-for-copy’ meaning that you
can repeat the paste command. To stop this, press the Esc key.

Raw incoming message validation

When an incoming message is defined using the Raw message editor, then
TestExpert uses the definitions in the second column to compare with all the octets of
the received message. The definition expressions that are used are there to specify
different kind of matching conditions, such as: byte match, string match, skipping of
bytes that doesn’t have to be checked, checking for equality with variables, etc..

Given a message, received from the system under test, carrying the following bytes
(in hex):

 01 FE 80 20 30

You have different possibilities to define this message in your scenario.

The message content is completely known beforehand

With this method you completely define all the bits and bytes of the message. For the
above example, the message could look as follows:

Field description Definition

First byte 0x01

Next 2 bytes 0xFE 0x80

Fourth byte " "

Last byte (0x28 + 0x08)

Validating the above message against this expression results true because the
individual bytes of the message correspond with the outcome of the various
expressions.

42

The validating process roughly happens as follows:

• The current position pointer in the message is set to the first byte of the
received message.

• The first value of the expression, i.e. 0x01, is compared with the message
value at the current position of the field pointer

• The second statement in the expression, i.e. 0xFE 0x80, tells the system to
check the next byte against 0xFE, move the current position pointer 1 up,
check the next byte against 0x80 and again move the position pointer 1 up.
We are now at the fourth byte.

• The third value in the expression, i.e. " " denotes a string. The string is
compared with the message byte(s) starting at the current position of the
pointer. Because the string only contains a single 'space' character, only 1
byte in the message (the one with value 0x20) is compared. The position
pointer moves as much bytes to the right as given by the length of the string.

• The last statement involves an addition of 2 values. The result of this
calculation is 0x30 which is compared with the value at the pointer position.

Message content is only partially known

Let’s assume that the incoming message, specified above, can carry different values
in byte 2 and 3, depending on conditions which you cannot control. So you need a
method to ignore these 2 bytes.
That’s exactly the purpose of the @skip() statement. You can use it as follows:

Field description Definition

Expression 0x01 @skip(2) " " (0x28 + 0x08)

Only look at the first part of the message

You can tell TestExpert only to look at for instance the first byte and to ignore the

remainder of the message by defining the @skip(*) statement. You use it as

follows:

Field description Definition

Expression 0x01 @any

Conditional interpretation of message data

If your protocol messages carry information elements of which the format and content
is dependent on certain bits or bytes in the message, then you might have to use
TestExpert’s conditional expressions to check them.

Consider an information element which carries a single byte length value in the 2nd
octet if bit 8 in the first octet is set to 1, and a 2 byte length value in the 2nd and 3rd
octet if the bit is not set.

43

• In case of a single byte length you want the first octet to be 0x80 and the
length to be 0x01.

• In case of a 2 byte length you want the first octet to be 0x7F and the length
value to be 0x0005. You can use TestExpert’s @if and @$ statements to

account for this.

You will have to code that part of the message as follows:

Field description Definition

Octet 1, 2 (and 3) @if(@$ & 0x80) ? {0x80 0x01} : {0x7F 0x0005}

Explanation

@$ in the @if() statement refers to the value of the byte at the current parser

position, i.e. the first octet.

If the @if() expression is true then, starting from the current parser position the

next 2 bytes must be 0x80, 0x01.
If the expression is false, then at the current parser position there must be a 0x7F
byte followed by 0x00, 0x05.

Raw incoming message extraction

Assume a message, holding 3 octets in octet 2, 3 and 4 which are unknown upfront.

When the message is received in a scenario and matches the current scenario state
octets 3 and 4 need to be saved in a run-time variable in order to use them later in
the scenario in one of the outgoing messages.

To store these 2 octets, you will define the message as follows:

Field description Definition

First byte 0x01

3 unknown octets @skip(1) @set(rcvdRef, @$(2), @word) @skip(2)

Fourth byte " "

Last byte (0x28 + 0x08)

The @skip(1) statement in the definition column of the 2nd row skips the first octet

of the second row (which is octet 2 in the message).

The @set(rcvdRef, @$(2), @word) command then takes the next 2 octets at the

current parser position of the received message, converts them to a word value (16
bits) and stores the value in the runtime variable ‘rcvdRef’.
Because a @set() statement doesn't move the parser position, there is still a
@skip(2) statement necessary to skip these 2 bytes and move the parser position

up.

44

HTTP message editor

The HTTP Message Editor is the 2nd type of editor in TestExpert. It lets you define
HTTP request messages (GET, POST, etc.) and HTTP response messages (200
OK, 401 Unauthorized, etc.) in a very easy way.

To invoke the editor click HttpMessage in the Template selection dropdown box that
is presented above the Content section of any message editor.

The editor groups the various properties of a HTTP message in the following groups:

• General

• Query

• Header, and

• Body.

General

In the General group you have to select the type of message: a request or a
response.

• With a request message you additionally have to select:
o The request Method (GET, PUT, ..),
o An optional URL, and
o Optional Authentication parameters.

When you select ‘a globally configured URL’ then TestExpert will not
assign a URL to the message but it will let you select the URL later on

45

when the message is used in a scenario or when you want to send it out.
This allows a given message to be sent easily to multiple devices.

• With a response message you only have to select the Status Code (200 OK, ..) in
this group.

Query

The Query group is available in case of a HTTP request message.

When you add or modify a query field a dialog pops up that lets you specify the field’s
name and value.

Header

The Header group is the place where you define general, non-content related
message headers.

To add a header, tap the empty Header box in the last header row and type or select
the header name from a list of possible header names. Then tap the Value box on
the same row and type or select the value.
To delete a header, tap the X button shown on the right side of the corresponding
row.

Body

The Body group lets you define the content of the body part of the HTTP message
and content-specific HTTP headers (like Content-Type, Content-Id, ..). You can
define the content as being: text, a file, url-encoded form data, and multipart data.

46

Text body

When you select Text as content for the Body group you will be given the possibility
to enter the text (in the Content textbox) and additionally provide content-related
headers that apply to the content you enter.

Note that TestExpert will force you to provide a value for the Content-Type header
that it automatically will add to the Body. This header cannot be deleted.

File body

Selecting File tells Expert to take the content of a given file and use that as content
for the message body.

You must select the file by tapping the Browse button and, same as with a Text body,
you can define one or more content headers (of which the Content-Type header is
mandatory.

47

Url-encoded form data

Select Urlencoded form data in case you want to have a message body with form
data fields that have to be url-encoded.

To add a form data set tap the Add a form data set button. This bring up a dialog
where you can provide a name and a value for the set.
As with the other type of content bodies you can also add content specific headers.

Important: Don’t change the automatically added Content-Type: x-www-form-
urlencoded header!

Multipart body

Select Multipart data when you want to have a message body that contains multiple
entities of data.

48

You must then also indicate what the purpose is of those entities by selecting one of
the options in the Multipart subtype dropdown box. You can choose: form-data,
mixed data, alternative data, and related data.

Important: Don’t change the Content-Type: multipart/.. header that is automatically
added.

To add the various parts tap the Add a part button. This pops up a dialog where you
can specify the content of the multipart entity.

You have to define the following properties:

• The type of content - It can be: Text, a File, or Multipart data. TestExpert will
automatically add a default Content-Type header. You are free to change the
value of this header except when selecting Multipart. In that case the type is
set to the selected multipart subtype (multipart/mixed, multipart/alternative, or
multipart/related).

• A possible name for the entity – The Name textbox is only available when the
entity is a part of a multipart/form-data body. In that case TestExpert will also
automatically add a Content-Disposition header to the set of content headers.
The value of this header is filled in by TestExpert (using the value from the
Name textbox).

• Possible content related headers – Add these headers by tapping the Header
textbox in the last row of the headers list and typing or selecting the header
name from a dropdown list. Do the same with the Value textbox.

• The only thing left to do then is to define the content itself. How to do that is
depending on the type of content.

Text Content

The text itself must be defined in the Content textbox.

49

File Content

In case the entity is part of a multipart/form-data body you must define the name of
the file in the Filename textbox. It is used (together with the Name entry) by
TestExpert to set the value of the Content-Disposition header.

The file itself is selected by tapping the Browse button.

Multipart Content

You must select the multipart subtype from the Multipart subtype dropdown box. You
can select: mixed, alternative, and related. TestExpert will set the part’s Content-
Type header accordingly.

As the explanation in the dialog says you have to close the dialog and select the
multipart entity in the Body part of the message when you want to manage the
entities which you want to have inside this multipart element.

To add a sub-part right-click the parent multipart and select Add a part from the flyout
menu.

50

To reveal the configured sub-parts simply tap the multipart entity in the list.

To hide the sub-parts tap again the parent multipart entity.

To edit a sub-part right-click on the sub-part and select Modify from the flyout menu.

Hard-coded versus MDL-driven HTTP

messages

As with all other message editors in TestExpert you can define the payload values for
most of the HTTP message elements in outgoing and incoming messages either as
hard-coded values or as a combination of hard-coded values and values that are
resolved using TestExpert’s Message Description Language (MDL).

An example of the latter method is the use of the @var() expression to get the value
from a runtime or static variable. This is useful when you want to work with messages
where the payload has to be different in some circumstances or is depending on
other messages that have been received/sent in a test scenario.

Another example is the definition of an incoming message. It will often be very hard
to upfront describe an incoming message in full detail: e.g. because the remote
system doesn’t react in a static way and the message content is therefore not entirely
predictable. You often are also not interested in all of the message elements.
To help you with this TestExpert provides the MDL @match() and @skip()
expressions.

The @match() statement allows you to validate a particular element of an incomng
message using a regular expression (i.e. without fully defining the actual strings).

The @skip() statement lets you tell Expert to skip the validation for a number of bytes
or for the full element.

The use of the MDL is supported for the following HTTP message elements:

• URL

• Query field names and field values

• Header field values

• Text body values

51

Example 1 - Assume you have a variable fullUrl set to “http://192.168.30.4”.

You can then define the URL in a HTTP request message as:

Example 2 - You can also mix hard-coded values with variable data

Example 3 – A similar example but now for the text content in the body part of a
message.

The json object definition in the above example refers to a TestExpert variable
lastNameSearch. When sending the message out TestExpert will substitute the
expression with the actual value of the variable.

Example 4 - Use the @skip(*) statement to ignore the full value of an element of an
incoming HTTP message. In the example the URL path is ignored.

Example 5 - Assume that the field value of a given query field in an incoming request
message contains a path-like string (e.g. “3/4/100”) and we are not interested in the
value of the last part.

This matches: “3/4/100”, “3/4/7”, etc, but not “4/4/100”. TestExpert will process the
@match() statement by trying to find a match in the incoming message using a regex
where the regex pattern is «3\/4\/.*».

Note - Because regular expressions are an important tool in TestExpert when dealing with
message validation and also information extraction (see later) for HTTP messages you will
need some knowledge about it.

A good information source for this is Wikipedia.
A quick reference of the Regular Expression Language (as supported by the .NET engine in

TestExpert) can be found here and here.

A good website to verify your regex patterns against content of your choice is .NET Regex
Tester - Regex Storm.

https://en.wikipedia.org/wiki/Regular_expression
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
http://regexstorm.net/reference
http://regexstorm.net/tester
http://regexstorm.net/tester

52

Ignore unspecified query fields and headers in incoming HTTP

messages

With incoming HTTP messages the editor gives you the possibility to ignore
unspecified query fields, general header fields, and header fields in the body part of a
message. That option is set as a default.

When you unselect the option then TestExpert will validate all received fields against
the definitions that it finds in a given scenario message. If it fails to find a matching
field then the message will be invalid.

Assign values to variables while executing a

scenario

When a scenario is executing and an event comes in that matches with a given
incoming message event then TestExpert allows you to assign values to runtime
variables in 2 ways:

• By having specific Assign Variable actions attached to the matching event.

• By having assignment statements in the event’s incoming message
specification. The HTTP elements for which this is supported in the editor are:

o URL (HTTP server),
o Query fields (HTTP server), and
o Text body (HTTP client and server)

The assignment statements have to be entered in a table that looks as follows:

You can add as many rows as you like. Managing rows (add, delete, copy, etc.) is the
same as with the Raw message editor.

The left cell in each row holds the variable’s name.The right cell contains a statement
that provides the value to be stored in the variable.

These are the possibilities:

Action Content of the Assignment
expression/statement cell

Set a hard coded numeric value, e.g. 100. 100

Set a hard coded string value, e.g. “abc”. “abc”

53

Set a value using an expression with a @var
statement.

(1 + @var(id))

Extract a value from the HTTP element using a
regular expression and assign it to a variable.

@rvalue(“pattern”)

Extract a value from the HTTP element using a
JSONPATH expression and assign it to a variable.

@jvalue(“jsonpath”)

Extract a value from the HTTP element using an
XPATH expression and assign it to a variable.

@xvalue(“xpath”)

Regex example

Store all characters of a string (up to a newline character) in a variable

@rvalue(".*")

HTTP incoming message validation

TestExpert validates HTTP messages received in a client or server test scenario as
follows:

HTTP response messages (client scenario)

• The status code in the HTTP status line must match the one defined for the
message in a scenario’s Message Event.

• The reason phrase in the HTTP status line is completely ignored.

HTTP request messages (server scenario)

• The request method must match the one defined for the message in a
scenario’s Message Event.

• The absolute URL path must match with the definition.

• All query fields defined in the solution message must be present in the
received message.

HTTP request and response messages (client and server scenario)

• All the general header fields defined in the solution message must be present
in the received message.

• All the content related header fields specified in the solution message must be
present.

• Finally the ‘content’ part defined in the solution message is checked against
the content in the received message.

Automatically included headers when
sending

Some headers, when not defined by the user, will automatically be included by
TestExpert when it sends the message in a scenario or in the Send Message view.

54

These headers are:

• For HTTP Request messages:
o Accept-Encoding: gzip, deflate
o Host: <set to the target address>
o Connection: Keep-Alive
o If-Modified-Since – Only with GET requests.
o Content-Length – With request messages carrying a body element. The

length is set to the size of the included body.

• For HTTP Response messages:
o Server: TestExpert/1.0
o Content-Length: <size of the included body>

55

ABNF message editor

The ABNF message editor is the 3th type of message editor in TestExpert.

If you are dealing with text based protocol messages then TestExpert gives you the
possibility to define the content of those messages in a very simple way using ABNF
template files. TestExpert has a built-in parser for such files and its Template
message editor can present single message elements, multiple elements and
optional elements in a user-friendly way.

For example consider the following (simple) ABNF file supporting 2 type of
messages:

• 3 type of request messages: SwitchOn, SwitchOff, and Reset. The first 2 carry
a parameter which defines the device ID.

• 2 response messages: OK and NOK.

The ABNF file defining the rules for this protocol would look as follows:

; !name("DeviceProtocol device-easy.abnf")

; !syntax("abnf")

; !import("core-abnf.abnf")

; !import("ALPHA","CRLF","DIGIT","DQUOTE","HEXDIG","HTAB","OCTET","SP","WSP")

message = request / response

request = switch-on / switch-off / "Reset"

response = "OK" / "NOK"

switch-on = "SwitchOn" ":" device-id

switch-off = "SwitchOff" ":" device-id

device-id = <?> ; Valid id's: 0..9

The first 4 lines are comment lines.

The remaining lines define the message protocol in detail by specifying the different
message elements. Element descriptions can optionally contain a comment (after the
ABNF element description) which can be shown as help text by SyncFolder. Provide
a comment by preceding the comment with a semicolon «;». A comment can span
multiple lines by starting with a semicolon on each line.

More information about the use of ABNF can be found, amongst others, on Wikipedia
and in the official IETF specification RFC 5234.

Examples of ABNF template files can be downloaded from the TestExpert website.

To use the message editor you must first go through the following 2 steps:

• Create an ABNF file containing all the required message rules. The section
about Template files later in this document describes the format of the file in
more detail and some TestExpert specific extensions.

• Then make sure that the template file has been configured in the solution. You
can do this by opening the Solution properties page and adding the ABNF file
there.

You can then make use of the template file for both outgoing and incoming
messages.

https://en.wikipedia.org/wiki/Augmented_Backus%E2%80%93Naur_form
https://tools.ietf.org/html/rfc5234
http://testexpert.cwwonline.be/MessageTemplates

56

Specifying outgoing messages

When the above template file is used to define for instance a outgoing SwitchOn
message, TestExpert will present the following interface to the user in its Template
message editor:

Elements shown in green don’t need any further specification, elements shown in
blue (like device-id in the example) require additional actions. Click on the element to
provide the necessary data.

Specification modes

There are 2 ways to define the content of the various message elements that are
presented by the ABNF editor when editing a outgoing message:

Template Mode - Define the content of an element from the ABNF
template.

 Edit Mode - Specify the content of the complete element manually in a text
box.

57

The option of your choice can be selected by clicking on the small button on the left
of the element header.

1. With the first Template Mode option, when you select an element then the editor
will take the ABNF template file definitions and show the ABNF element in the
following manner:

• As a single element for which you must define the content in a text box, or

• As an optional element that you can include or exclude, or

• As a group of elements for which each of them have to be expanded in order
to specify their final content, or

• As a list of elements where you can add as many element items as you want,
or

• As a set of alternatives to choose from.

2. With the second Edit Mode option you simply define the content of the complete
element manually. If we would use this option to define the element content in the
above example the definition would be:

Because we have chosen not to use the ABNF syntax definition for the “switch-
on” element, we must define the content of the whole element ourselves.

Specifying content data in text boxes

There are 2 ways you can specify the content of an element when a text box is
presented:

1. Simply define a hardcoded value or string for the content. E.g.:
“1”, “Bob”, etc.

2. Enter the value or string by using the TestExpert @var() statement to include
data taken from static or runtime variables. E.g.:

58

TestExpert will take the specified definition, check if there are TestExpert
statements in there and, if so, convert them to their value.
E.g. assume ‘appartment_id’ is a static variable set to “1”, and ‘kitchen_light’ is
a variable set to “7”, then the following definition will be translated to “1/7”;

Single line and multi line text box

The presentation of a text box is depending on whether Template Mode or Edit Mode
is selected.

• In Template Mode the default is a single line box, unless the definition of the
element in the ABNF template file contains the TestExpert prose-val command
<??>, like in:
message-body = <??>

• In Edit Mode the default is also a single line box but there is a toggle button
under the text box that allows you to switch between a single line and a multi
line text box.

A single line text box doesn’t allow you to add newline characters (through the Enter
key) whereas a multi line textbox does.

Note: The default character for newline in a multi line textbox is the \n character. You
can change that into a \r character followed by \n by opening the Solution Properties
page and setting the “Force line break characters in inputted strings to CRLF..” toggle
switch to ON.

Save content length in a variable

The panel where you can enter data in the text box also shows a “Save content
length into a variable” checkbox. This can be useful when you don’t want to work with
fixed size data but the actual data length must be passed in some other element.

Example: A SIP or HTTP request carries a body message of which the size must be
specified in the Content-Length header.

Verify the message definition

Checking the Show payload data checkbox will instruct the app to show the complete
message data defined by the user.

Note however that if the definition contains TestExpert statements to take data from
variables then those statements are not parsed.

To see the completely parsed payload you must use the Message Properties panel
on the right column of the page and press the Verify button.

59

Specifying incoming messages

The ABNF message editor for incoming messages looks similar to the one for
outgoing messages but presents some additional options that are needed when you
want to tell TestExpert to maybe ignore the content of some elements are allow
different values for some elements. Without this you must exactly describe all
messages upfront what in most cases would not be possible.

The way TestExpert provides this flexibilty is by offering 4 ‘specification modes’ for
each of the message elements:

Template Mode - Define the expected content of an element from the
ABNF template.

 Edit Mode - Specify the expected content of the complete element
manually in a text box.

Match Mode - Match the content using a regular expression.

This allows you to specify a partial match, and a match with possible
different alternatives.

Skip Mode - Skip the content completely and thus accept any content for
the field/element.

1. The first 2 options are the same as for an outgoing message.

2. Match Mode allows you to validate the incoming message element by
providing a regular expression that specifies what data/values are allowed to
be present in the content of that particular element.

3. Skip Mode allows you to tell the app that you are not interested in the actual
data of the content; i.e. any data of the incoming message element is allowed.

When using Match Mode or Skip Mode the app must be told where it can find the
next element when it has finished processing the element. This is done by providing
an appropriate regular expression pattern, unless the element is the last element in
the message definition.

The next examples show how you can use the above 4 specification modes to
specify incoming messages completely in all details or partially where you only want

Note - Because regular expressions are an important tool in TestExpert when dealing with
message validation and also information extraction (see later) for ABNF template messages
you will need some knowledge about it.

A good information source for this is Wikipedia.
A quick reference of the Regular Expression Language (as supported by the .NET engine in

TestExpert) can be found here and here.

A good website to verify your regex patterns against content of your choice is .NET Regex
Tester - Regex Storm

https://en.wikipedia.org/wiki/Regular_expression
https://msdn.microsoft.com/en-us/library/az24scfc(v=vs.110).aspx
http://regexstorm.net/reference
http://regexstorm.net/tester
http://regexstorm.net/tester

60

to validate a couple of elements and/or want to skip validation of one or more
elements.

All examples assume the following SIP input message:

INVITE sip:bob@biloxi.example.com SIP/2.0
Via: SIP/2.0/TCP client.atlanta.example.com:5060;branch=z9hG4bK74bf9
Max-Forwards: 70
From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl
To: Bob sip:bob@biloxi.example.com
Call-ID: 3848276298220188511@atlanta.example.com
CSeq: 1 INVITE
Contact: sip:alice@client.atlanta.example.com;transport=tcp
Content-Type: application/sdp
Content-Length: 151

v=0
o=alice 2890844526 2890844526 IN IP4 client.atlanta.example.com
s=-
c=IN IP4 192.0.2.101
t=0 0
m=audio 49172 RTP/AVP 0
a=rtpmap:0 PCMU/8000

The top ABNF element (retrieved from a SIP template file) that describes such a SIP
request message looks as follows:

It consists of 4 parts:

• A Request-Line (the 1st line in the above example message) ending with a
CRLF.

• A number of message-header lines (the 2nd till 10th line above) each ending
with a CRLF.

• A empty line with only a CRLF.

• The message-body consisting of a number of lines.

First, lets look at the definition of the Request-Line containing the method (“INVITE”),
the request-uri (“sip:bob@biloxi.example.com”) and the SIP-Version (“SIP/2.0”).

In the following sections we show a couple of ways how to define this.

Full Template Mode

Using Template Mode on all the message elements of the expected Request-Line,
the definition for the first 2 elements in the Request-Line (the SIP-Version is
hardcoded in the ABNF template file) must be:

sip:bob@biloxi.example.com
mailto:3848276298220188511@atlanta.example.com
sip:alice@client.atlanta.example.com;transport=tcp
sip:bob@biloxi.example.com

61

Method

The method is fixed by the user specifying that an incoming message must start with
the “INVITE” string in order to match this message. The string is selected from a
dropdown box that holds all possible method strings defined in the ABNF.

Request-URI

The uri must start with “sip:” and consists of: optional ‘userinfo’, a mandatory
‘hostport’ element, 0 or more ‘uri-parameters’ and optional ‘headers’.

userinfo

In this example we want to validate the userinfo element and tell TestExpert that the
user’s name in the incoming message must be “bob” and the optional password must
not be present. The userinfo element then must look as shown next.

The ‘user’ part:

And, the ‘password’ part:

sip:

62

With the above definition a message with a Request-URI that doesn’t contain bob in
the userinfo part or contains a name and a password, will be indicated as not
matching.

Hostport

Hostport consists of a host part and an optional port number.The host is hardcoded
by the user as follows:

The host port number is excluded. We don’t show it here but its ‘Include element’
checkbox is unchecked.

uri-parameters

Uri parameters in a Request-URI are optional but, when present, you can have more
than one. Each parameter starts with a semicolon, followed by a name, an equal
sign, and a value.
The list of parameters ends when either a header is reached or the SPACE character
(which ends the Request-URI).

63

1. If we assume that the Request-URI musn’t contain uri parameters then the uri-
parameters element must be defined as follows:

2. If we assume that the Request-URI might contain uri parameters, but we don’t

specify any ourselves, then the definition must look as follows:

The ‘Accept unspecified elements…’ checkbox must be checked to indicate
that we allow unspecified uri-parameters.

The regex pattern must be provided because uri-parameters is a list and so
we must tell the app where the list ends. Here the list ends at either a ?
character (which is the 1st character of a header when present) or at the
SPACE character (which is the end of the complete Request-URI).

The regex pattern therefore is: «\?\s»

headers

We assume that there are no headers in the Request-URI. The definition therefore is:

Combination of Template Mode and Skip Mode

In practise, full template mode would limit the use of the above message in various
scenarios since the expected content is almost completely fixed upfront. In most
cases that would not be a good idea and so a combination of Template, Match and

64

Skip Mode will be better because it offers more flexibility when choosing to either
check or ignore certain elements of a message.

The first element that is a candidate for such flexibility would be the Request-Uri.

Request-URI:

By setting Skip Mode for the Request-URI, we tell TestExpert to not validate the
content of the uri. The definition looks as follows:

Any element that is told to be skipped and is not the last element in the message
needs a regex pattern that tells the app where the next element is located in the
incoming message. For a SIP Request-URI, this is the first SPACE character. The
regex pattern therefore contains «\s».

Note also the table with the “invite_request-uri” entry. It is there to tell the app to save
content of the element in a runtime variable. This can then be used in an outgoing
message when sending a response. See ABNF incoming message extraction for
more details.

Message headers

The message headers in the incoming SIP message are another example where it
makes sense to use both Template and Skip Mode.

The headers are specified in our ABNF template file by the 0*(message-header)
repetition group element and thus are part of an element list.
For our example we want to specify a set of mandatory headers and also indicate
that it is allowed to have additional, unspecified headers in the message. The
definition for the repetition group / list then looks as follows:

65

The “Accept unspecified elements…” checkbox is checked which tells TestExpert to
ignore list elements for which the user hasn’t provided a definition and to ignore the
order of the element that have been defnied.

Because the group element holds a list of elements we must also tell TestExpert how
it can find the end of the list. You do that by entering a regex pattern in the presented
text box. In our example we must locate the 1st empty line that follows after the last
header and therefore the pattern is set to «(?<=\r\n)\r\n».This pattern indicates that
the element that follows the last header is an empty line (with only a CRLF) that
follows after the CRLF of the last header.

The next step is to specify which of the SIP headers we definitely want to see in the
incoming message. These mandatory headers are: Via, From, To, Call-ID, and CSeq.

Let’s look at the definition of one of those headers.

Message-header

The ABNF definition of message-header is (partially):

message-header = (Accept / Via / To / From / Call-ID

 / CSeq / Accept-Encoding) CRLF

Via header

The ABNF definition of the Via header is:

Via = ("Via" / "v") HCOLON via-parm *(COMMA via-parm)

The Via header is therefore specified by first selecting the header name from a list of
alternatives and then selecting “Via” or “v” as the actual name to be used.

66

The via-parm field that follows the colon character after the “Via” string must not be
validated in a TestExpert scenario and therefore its definition is as follows:

The regex pattern for skipping the via-parm element is set to «\r» which also
indicates that the next 0*(COMMA via-parm) element in the definition will be
unchecked and will not have additional via-parm elements.

The definition for the 0*(COMMA via-parm) element therefore is:

To summarize: The above definitions indicate that a Via header starts with “Via”, then
follows a colon, then follows one or more via-parm strings that are not checked, then
follows a CRLF.
The table entry indicates that everything that follows after the colon (excluding the
terminating CRLF) is saved in runtime variable “via_parm”.

67

Match Mode

Match Mode must be used when you don’t want to define upfront the full content of
an element, or don’t want to simply skip the content, but want to instruct TestExpert
to validate some data in the incoming message element.

An example: In the previous section the content of the SIP Request-URI was not
validated. Now we want to check if the username field is set to “john”, “bob”, or
“steve”.

The simplest way to do that is to switch on Match Mode for the complete Request-
URI and define the element as follows:

There are 2 text boxes here:

The 1st text box must get a regex pattern that describes which input data is
considered to be valid.

The 2nd text box is the same as with Skip Mode and therefore must contain a regex
pattern to locate the end of the element.

Often used regexps for message validation

.* Skip till the next newline/LF (\n, 0x10) character (without consuming the
LF).

.*(?=\r) Skip till the next CR (\r, 0x0A) character (without consuming the CR).
Useful when a newline is specified by means of a CRLF.

.+(?=\r) Expect at least 1 character and skip then till the next CR (\r, 0x0A)
character (without consuming the CR). Useful when a newline is
specified by means of a CRLF.

.+(?=) Expect at least 1 character and skip then till the next space/SP (0x20)
character (without consuming the SP character).

\r\n(?=\r\n) This searches the content for 2 consecutive CRLF's but without
'consuming' the 2nd CRLF. It makes use of a regular expression look-

68

behind assertion and skips/delimits everything from the current position
till the position in the string where there is a CRLF (0x0A, 0x10)
immediately following another CRLF. The second CRLF will not be part
of the delimited area.

(.|\s)* Skip all remaining characters of the string (including whitespace: space,
tab, newline, etc.).

(\s*) Skip all whitespace characters (if any).

Save data from incoming messages

The ABNF message editor allows you to tell the app to extract incoming message
data while a scenario executes and save this data in runtime variables. The saved
data can then be used to format a possible reply message.

To use this feature for a given message element you must configure Match Mode or
Skip Mode on that element. With those 2 modes you get a checkbox that you must
check in order to see a table where you can add statements for extracting and saving
data in variables, like so:

There are 3 columns:

• The 1st column contains the row number. The number is not important but the
cell is there to allow you to add/delete rows. Do a right click on the row number
to see a flyout menu with Cut, Copy, and Insert commands.

• The 2nd column / cell contains the name of the runtime variable that has to be
created/updated with the value of the retrieved data.

• The 3rd column/cell will typically contain the TestExpert @rvalue(), @xvalue()
or @jvalue() assignment statement to indicate which data must be retreived
from the incoming message element.

The 3 assignment statements:

1. When the incoming message contains a unformatted string then you must use
the @rvalue(pattern) statement. This tells TestExpert to use the pattern in a

69

regular expression in order to match the required data and save the complete
match in a runtime variable.

2. When the incoming message contains content that is formatted in XML then
you can use XPATH to select nodes and store the associated data in a
runtime variable.
You will use the MDL statement @xvalue(path) for this.

3. When the message contains JSON content then you can use JSONPath to
select nodes and store the associated data in the runtime variable.
You will use the MDL statement @jvalue() for this.

Message extraction using @rvalue() with a regex

The extraction pattern must be given as a ‘string’ parameter between double quotes
in the @rvalue() statement and is handled by TestExpert during message parsing as
follows:

• TestExpert executes a regex with the assigned pattern with the starting search
position set to the 1st content character of the incoming element.

• When it finds a match it copies, starting from the match index, as many
characters to the variable as indicated by the length of the match.

Example 1

A first example shows how to extract the complete value of the Call-ID header from
our incoming SIP message. This header looks as follows:

Call-ID: 3848276298220188511@atlanta.example.com

The call-id value is everything after the semicolon «:». To extract this value the table
entry for a variable ‘call_id’ would be like this:

The regex pattern is set to «[^\r\n]+». This means: take all characters but stop when a
\r or \n character is detected.

This will result in the variable ‘call_id’ getting the value
“3848276298220188511@atlanta.example.com”.

Example 2

mailto:3848276298220188511@atlanta.example.com
mailto:3848276298220188511@atlanta.example.com

70

Assume you want to save the account address that appears in the 'From' header of
our example message in a runtime variable with the name 'userAccount'. This header
looks as follows:

From: Alice <sip:alice@atlanta.example.com>;tag=9fxced76sl

The accountname is everything between «<sip:» and «>». To extract this name the
@rvalue() pattern for ‘account’ must looks as follows:

Message extraction using @jvalue() with JSONPath

Assume the following JSON result in a message:

{ "store": {
 "book": [
 { "category": "reference",
 "author": "Nigel Rees",
 "title": "Sayings of the Century",
 "price": 8.95
 },
 { "category": "fiction",
 "author": "Evelyn Waugh",
 "title": "Sword of Honour",
 "price": 12.99
 },
 { "category": "fiction",
 "author": "Herman Melville",
 "title": "Moby Dick",
 "isbn": "0-553-21311-3",
 "price": 8.99
 },
 { "category": "fiction",
 "author": "J. R. R. Tolkien",
 "title": "The Lord of the Rings",

71

 "isbn": "0-395-19395-8",
 "price": 22.99
 }
],
 "bicycle": {
 "color": "red",
 "price": 19.95
 }
 }
}

Some examples

JSONPath Result

$.store.book[*].author The authors of all books in the store.

$..author All authors.

$.store.* All things in store, which are some books and a red
bicycle.

$.store..price The price of everything in the store.

$..book[2] The third book.

$..book[-1:] The last book in order.

$..book[0,1] The first 2 books.

$..book[:2] The first 2 books.

$..book[?(@.isbn)] Filter all books with isbn number.

$..book[?(@.price<10)] Filter all books cheaper than 10.

$..* All members of the JSON structure.

Message extraction using @xvalue() with XPath

Still to do.

72

Message properties editor

The Message properties editor allows you to configure a number of properties of the
message and have a look at how the message data would look like when it would be
sent out. The editor comes up in a number of ways:

• When you have a message open in TestExpert’s tabs area and the screen is
wide enough the Message properties editor opens automatically on the right
side of the screen.

• When the screen is too narrow you can open the editor by pressing the
Properties button in the Message editor view. In this case the editor shows in
front of the tabs area. You close it by pressing the Back arrow icon in the top
left corner of the windows.

Name

You can change the name of the message by tapping the Name text box and then
typing/overwriting the name.

73

Description

The annotation box is a simple multi-line edit control in which you can type any
description you want. Its usage is optional.

Verify

You can ask TestExpert to parse the message definition as it is currently set in the
Message editor into a list of values by tapping or clicking the Verify button. When
done the message is shown standard as a set of hexadecimal bytes . If you like to
see the resulting data as a string then you can opt for that by checking the ‘Show
content as string’ checkbox.

When everything is well the message values are shown in green.

When TestExpert is not able to decode a given definition (e.g. because the user
hasn't provided a concrete specification for it or the definition contains errors) the
message output stops at the faulty location and text and values are shown in red.

Match

When looking at the properties of an incoming ABNF type of message there is also a
Match button which you can click to match the message definition against message
content that you can provide in a dialog window that will pop up.

Enter the message content or paste the content from somewhere in the text box of
the dialog window and press the Apply button.

74

TestExpert will then try to match the provided content against the message definition.
When the message definition contains one or more entries to create runtime
variables from the inputted content, and the match is OK, then TestExpert will
create/update these variables. You can then use those variables to verify outgoing
messages that make use of them.

Verification and Match options

Select None, Basic or Extended in the Select detail radio buttons group to show less
or more information when requesting Verify or Match.

Check the Ignore parameters error and Ignore variable errors checkboxes to prevent
a faulty dump in case you would have definitions in your message which refer to
parameters and/or variables that might not be defined at this stage.

75

Managing raw message elements

Messages that need to be exchanged between 2 devices are formatted following a
well-known protocol specification that defines the structure and the payload of the
messages. The structure is typically defined in terms of message fields which contain
different classes of information. These fields can present information about the
message originator, the message recipient, a subject matter, possibly references to
previous messages, user data, etc.
Sometimes these fields can be as simple as a string or a byte but often they are more
complex, e.g. in binary message protocols.

In order to avoid that you have to re-specify such fields completely again in different
messages the TestExpert solution file comes with a separate Outgoing message
elements and Incoming message elements section where you can define individual
information elements (with a name) and specify their content. TestExpert then allows
you to ‘include’ such a reusable element at the place you want when you are defining
an outgoing or an incoming message.

You can create 2 type of message elements:

• Elements whose content is fully specified upfront in the element content
definition.

• Elements whose content is depending on one or more input parameters that
have to be defined at the moment the element is to be inserted.

Message elements are added to the solution in the same way as real, full messages;
i.e. by tapping or clicking on the navigation panel.

Message element editor

Because this feature is particularly important when you are editing a message in ‘raw’
format and of little use when you are using ‘templates’, the Message element editor
comes with the same user interface as the Raw message editor.

Including Message elements in a Message

The possibility to include a message element is only available in the Raw message
editor.

Note: This chapter is only applicable when dealing with raw messages, NOT with HTTP or
ABNF type of messages!

76

Parameter-less elements

Assume we have a message element called ‘bearerCap’ that is defined in folder
‘edss1’ of the Outgoing message elements group. Its content is defined as follows:

Field Definition

IE ident @var(eBEARER_CAP)

length 0x03

Octet 3 0x80

Octet 4 0x90

Octet 5 0xA3

You can include the above element as follows:

Field Definition

… ...

import bearerCap @element("ome/edss1/bearerCap")

… ...

Parameterized elements

Assume we have a parameterized message element called ‘callRef’ whose content is
defined as follows:

Field Definition

Call ref length 0x02

Call ref @if(@this.parm(1))
? (@this.parm(2) + 0x8000)@word
: (@this.parm(2))@word

The element expects 2 input parameters:

• Parameter 1 is a flag (which can be 0 or 1).

• Parameter 2 is a numeric value (max. 15 bits).

You can include the above element in 2 ways:

Method 1 – Pass parameters within the @element() statement

Field Definition

Protocol discr 0x08

import callRef @element("ome/edss1/callRef", 0, 7)

77

Message type @var("eCONNECT")

… ...

Method 2 – Use @setparm()

Field Definition

Protocol discr 0x08

set 1st argument @setparm(1, 0)

set 2nd argument @setparm(2, 7)

import callRef @element("ome/edss1/callRef")

Message type @var(eCONNECT)

… ...

78

TestExpert variables

TestExpert provides 2 type of variables which you can use when you want to define
the content of incoming messages and outgoing messages, or want to setup a
condition for a scenario action:

• Static variables, and
• Runtime variables

Static variables

The purpose of static variables is to define a single value or a set of values, give this
value (or values) an identifier name and use that identifier as a replacement for the
value(s).
The variables can be referenced when defining the contents of incoming messages
and outgoing messages by using the @var statement.

Static variables are also saved in the solution file.

Example 1

Assume you have a static variable called ‘AckID’ which contains a 16 bit value
0x8001. It is used in a message as follows (the example is for a ‘raw’ message

definition but variables are also supported with HTTP messages and ABNF template
messages):

Field description Definition

ID @var(AckID)

Device # 0x77

The resulting message content will then be the following 3 consecutive bytes
(assuming big endian for word, integer and long values):

0x80 0x01 0x77

Example 2

The following example shows some other ways to assign values to a variable:

Field description Definition

SIPBranchParm "z9hG4bK" @randomstr(11)

DeviceBase 0x10

KitchenLight (@var(DeviceBase) + 1)

The resulting value for SIPBranchParm will be: "z9hG4bKzckiesJdXR8"

The resulting value for KitchenLight will be: 0x11

79

Static variables editor

The Static variables editor is opened in a tab item when you tap or click Static
variables in TestExpert’s navigation panel.

Every variable is listed in a row of a table; the name of the variable is in the 2nd
column, the value of the variable is defined in the 3rd column.

Adding, modifying and deleting variables is done in the same way as with message
fields when you are managing messages in ‘raw’ edit mode. See Editing the
message table for a description on how to add/delete rows, navigate through the
table, enter text in table cells, and do cut/copy/paste actions.

Variables can also be added by clicking the ‘Import’ button. You will prompted to
select a file that contains one or more variable defnitions. The format of this text file is
as follows:

! A comment
var_1 = def_1
...
var_n = def_n

80

The file type must be .properties or .txt.

Example file

! General
abc = "ABC"
OK = 200
! Error strings
errorNotReachable = "Server is not reachable"

When importing the app will overwrite existing variables that have the same name.

Runtime variables

Runtime variables are variables which are not stored in the solution file but which can
be created by the system when a scenario runs. You can tell TestExpert to create
these run-time variables in a number of ways:

• By defining a @set statement in a Raw incoming message that is assigned to
a scenario event. When a message comes in that matches the event then
TestExpert will create/overwrite the runtime variable and assign the value to it
that is specified in the @set statement.

• By specifying for an element of a HTTP or ABNF type of incoming message
that one or more variables have to assigned.

• By having an Assign action in a scenario. This sets the runtime variable at the
moment the action fires.

You can then refer to these variables in your incoming and outgoing message
definitions in the same way as you do with static variables; i.e. by using the @var
statement.

Runtime variables view

You can see which runtime variables have been created by tapping or clicking the
Runtime variables menu item in the navigation panel.

This opens a tab item in the tabs area that shows all runtime variables in a similar
table as the static variables table.

81

You can’t change any of the runtime variables but you can clear the whole table.

82

Running a scenario

To run a scenario you must first open the scenario in the main tab area. Tap or click
then the Run button in the scenario.

This opens a new tab item that will have as its name ‘Run ‘ followed by the scenario
name.

The dropdown box Default target endpoint to use lets you select which endpoint you
want to use when a message must be send for which no target endpoint has been
defined and the message is not a response or a reaction to an incoming message.
Target endpoints can be configured in the Solution properties page.

You can check or uncheck Reuse existing target endpoint connections to instruct
TestExpert to use an already existing connection when sending a message to a
target endpoint or create a new connection the first time a message must be sent.

Execution of the scenario can be controlled by the 2 buttons: Run/Pause and Stop.

After pressing the Run button execution of the scenario is started. The history
window will then be populated with different kind of messages to show the progress;
the events occurring, the actions being executed, etc. The payload of all outgoing
and incoming messages will be dumped in a hexadecimal format with valid
messages shown in green and invalid messages in red.

83

You can clear the history window by pressing the Clear button.

Communication using default endpoint

When an outgoing message has been configured to use the default endpoint then the
following principles apply:

• If you have a scenario that starts by sending out a message then you must
select the endpoint that has to be used for sending from the ‘Default target
endpoint to use’ dropdown box.

• If you have a scenario that starts by waiting for a message to come in then you
must create a ‘Start server’ action for the “Start’ event and configure a listening
endpoint there.

• Once the initiating scenario has sent a message or the listening scenario has
received a message, all subsequent messages that are configured to use the
default endpoint will be sent to the initially established endpoint or, in case of
the listening scenario, to the endpoint that has been created when the first
message was received.

84

Incoming message validation

When a message is received while a scenario is running, TestExpert takes all the
message data above the transport layer and tries to find a match with any of the
incoming messages that are attached to the current scenario state. That is easy to
accomplish when you can define all of your incoming messages as having a fixed,
pre-determined, hard-coded set of values.

In most cases however it will probably be impractical to fully specify the expected
content of incoming messages. The reason for that is clear:

• Messages will have unpredictable values.

• The sequence of the various information elements is often unspecified.

• Messages will carry less or more optional elements, etc.

To cope with that TestExpert allows you to attach special validation statements and
properties to incoming messages. How this has to be done and how the system then
tries to find matches is depending on how the content of an attached message is
defined: in raw format, as a HTTP message, or as an ABNF formatted message.

Full details on how to deal with this can be found in the description of the various
message editors.

Extracting data from incoming messages

When a message comes in on a scenario and matches with an event that is attached
to the current scenario state TestExpert will not only execute the attached actions but
will also check if the attached message contains statements or properties to update
the values of runtime variables. The new values can be:

• A fixed, hard-coded value such as: rtVar1 = “Got it”.

• A dynamic/’calculated’ value such as: rtVar2 = (@var(count) + 1)

• A value extracted from the received message using a regular expression, a
XPATH expression or a JSON expression, such as: rtVar3 =
@rvalue(“.+(?=\r”)

The method how to specify such statements and how data is extracted is depending
on whether we deal with a raw incoming message definition, a HTTP message, or a
template based definition. Full details on how to deal with this can be found in the
description of the various message editors.

Running a scenario using the Windows
Command Line

You can use the windows command line to invoke TestExpert and instruct the app to
immediately execute a scenario. You can use this from the command prompt or from
the windows task schedular.

The syntax is:

85

testexpert --run [scenarioFolder\]scenarioName
 --solution path\solution.txprt

The solution file must be specified using an absolute path notation. Relative or
implicit path definitions are not possible.

Examples:

testexpert --run "sip client\scenario 3.1 (out)"
 --solution D:\projects\testexpert\sip-solution.txprt

testexpert --run sipclient\scenario_3.1_out
 --solution "C:\Users\me\my projects\sip-solution.txprt"

When called from the command line the app will save all scenario events in a log file
located in the app’s local folder. You can find the location of this folder by opening
the Settings view and clicking the “Show files in Explorer’ button.

Note also that there is no meaningfull exit code for the command line execution. You
will have to check the log file or the scenario execution view panel to see if the
scenario has executed successfully.

86

Solution properties page

You can configure a number of settings in the solution file which TestExpert will apply
to all included scenarios and message definitions.

Open the Solution properties page by tapping the properties menu item in the
navigation panel.

You can then configure the following properties:

Templates

Template files can be used for defining the content of text based protocol messages.
If you want to use them then you first have to add the file to the solution. Do this by
opening the Templates view and then tapping the Add a template file option.

The Open dialog box will appear. Locate and select your template file, then click
Open.

Note: Template files are assumed to be text files containing ABNF message
definitions. TestExpert assumes that these files have a type .abnf but you are free to

Property Description

Templates Open the Templates view to manage possible message template files
you want to use.

Message format Open the Message format view to configure a couple of message
formats such as big or little endian, UTF8/ASCII.

Communication Open the Communication view to configure the communication
channel(s) that you want to make use of when connecting with the
system under test. This includes both outgoing (target) and listening
channels.

87

give them any name and/or type. Refer to the ABNF template files chapter for a
description of the file format. Also note there that TestExpert makes use of some
proprietary ‘prose-val’ definitions to assist the user when editing single line and multi-
line text using the ABNF message editor.

Message format

The Message format view lets you configure a couple of Raw message encoding
options.

Encoding Description

Endianness You can select Big endian or Little endian. This option only applies to
messages that are defined using TestExpert’s Raw message syntax.
That syntax supports definitions in terms of short, integer, and long
values. The selected endianness then defines how the 2, 4 or 8 bytes
of those values are ordered ‘on the wire’.

String encoding Currently only UTF-8 (i.e. 8 bit ASCII) is supported.

Force line break You can check ‘Force line break to CRLF..’ if you want the app to
replace single newline characters (\r and \n) by \r\n (CRLF) in a multi
line text box.

This is supported for ABNF type of messages in all message
definition panels where a text box is presented to enter content. The
default action with a multi line text box when pressing the Enter key is
to insert a single \n character to create a new line.

88

Communication

When you tap the Communication view you can configure target endpoints/services
and listener endpoints/services.

Target endpoints and Services

The top section lets you configure one or more communication endpoints or services
that TestExpert will use to exchange messages. These are ‘target’ endpoints/services
which means that TestExpert will take the initiative to establish the connection (a
communication channel) when needed.

You can configure as many target endpoints/services as you want. When you run a
scenario you will have the possibility to select which of the configured endpoints or
services will be used for setting up the so-called default communication channel. That
channel will then be used by TestExpert when it must send a message for which no
specific endpoint has been assigned.

To add an endpoint or a service tap the Add endpoint/service button. You will then
get a popup where you can choose the type of transport protocol, the host address
and port, and other transport-specific properties.

TestExpert supports the following transport protocols for target endpoints:

• udp

• tcp

• http(s)

• http(s) post

The following subsections describe these options in more detail.

UDP target endpoint properties

Select udp if you want to have (or forced to have) a low level datagram transport
protocol. It is the fastest but connectionless and thus in essence unreliable.

89

Note:

For a UDP target endpoint you must specify both the target port and the listening
port. The latter is used to receive remote messages that are triggered by the targeted
device. As is common with UDP the listening port number will be passed as source
port when TestExpert sends a UDP datagram to the endpoint.

TCP target endpoint properties

Select tcp if you want a low level and reliable protocol that is fast and reliable.

Property Description Properties view

Transport/scheme Select udp.

Host address You must provide here the IP
address of the target device you
want to connect with.
Hostnames are not allowed.

Interface to listen
on

Tap the dropdown box to select
the interface on which you want
to bind the listener service.
Select All interfaces to tell
TestExpert to accept
connections occurring on any of
the installed interfaces.

Target port Enter the target/destination port
number.

Listening port Enter the listener port number.

Property Description Properties view

Transport/Scheme Select tcp.

Host address You must provide here the IP
address of the target device you
want to connect with. Hostnames
are not allowed.

Interface to listen
on

Tap the dropdown to select the
interface on which you want to
bind the listener service. Select All
interfaces to tell TestExpert to
accept connections occurring on
any of the installed interfaces.

Target port Enter the target/destination port
number.

Listening port Enter the listener port number.

90

Note:

TCP, being a stream protocol, normally requires that some form of message framing
data is present in outgoing messages. Various methods are around to accomplish
this such as: a count indicator at some fixed position (e.g. at the start of the
message), a tail marker (e.g. a CR in text-based messages), a length indicator in
some kind of header block (e.g. something like the Content-Length header in HTTP),
etc. TestExpert doesn’t take care of this so the user must make sure that the
necessary framing data is specified in the message content itself.

HTTP/HTTPS target endpoint properties

Select http if you want TestExpert to send HTTP request messages to the configured
endpoint and receive HTTP response messages from the endpoint.

Notes:

1. Secure HTTPS will automatically be enabled when the URL starts with https.
2. TestExpert will only allow this type of endpoint to be used for messages that

have been created by means of the HTTP Message Editor.
3. Chunked data transfer is not supported.

Property Description Properties view

Transport/Scheme Select http.

URL Enter the URL path here which
TestExpert will use when sending
a HTTP request message.

Note that the URL path must start
with http:// or https://.

Example:

http://192.168.30.4/service

Username Enter the username when the
target service expects user
authentication.

Password Specify the password when the
target service expects user
authentication.

Get client
certificate from a
file

Not supported yet.

91

HTTP/HTTPS POST target endpoint properties

Select httppost if you want to send messages using a HTTP POST request and
expect replies from HTTP response messages. TestExpert will then pass all
message data that must be sent to the endpoint as content data of a HTTP POST
message. The target service is expected to return the response data in a HTTP 200
OK response message.

Note: Select this type of transport for a target endpoint when you want to interact with
a target device on which the Remote Method Invocation Connector is running.

HTTP POST messages

TestExpert will issue all POST messages using HTTP/1.1.

The following headers will automatically be included:

Accept-Encoding: gzip, deflate
Host: <hostname-of-the-requested-uri>

Property Description Properties view

Transport/scheme Select httppost.

URL Enter the URL path here
which TestExpert will use as
request URI in the HTTP
POST message.

Note that the URL path must
start with http:// or https://.

Example:

http://192.168.30.2/rmic

Username Enter the username when the
target service expects user
authentication.

Password Specify the password when
the target service expects user
authentication.

Get client
certificate from a
file

Not supported yet.

HTTP header 1

HTTP header 2

You can define up to 2 HTTP
headers which TestExpert will
include in addition to the
standard headers.

92

Connection: Keep-Alive
Cache-Control: no-cache
Content-Type: <type-string-for-the-included-content>
Content-Length: <length of the content>

Listener endpoints and Services

The bottom section lets you configure one or more communication endpoints or
services for which TestExpert must bind a Server. These are ‘listener’
endpoints/services which means that TestExpert will simply start a server function for
them when told so in the scenario and then will have to wait for incoming connections
to appear. For these endpoints and services TestExpert will only be able to send
messages as a reaction/response to a received message.

To add a listener endpoint or service tap the Add endpoint/service listener button.
You will get a popup where you can choose the type of transport protocol, the
interface to listen on, the port number and other transport-specific properties.

TestExpert supports the following transport protocols for listener endpoints:

• udp

• tcp

• http

The following subsections describe these options in more detail.

UDP listener endpoint

Select UDP if you want to have (or forced to have) a low level datagram transport
protocol. It is the fastest but connectionless and thus in essence unreliable.

93

Note: With a UDP listener endpoint TestExpert will be able to accept incoming UDP
messages from any device you want. When responding TestExpert will send a UDP
datagram message to the IP address that originated the message and with the
destination port set to the originator’s source port.

TCP listener endpoint

Select TCP if you want a low level and reliable protocol that is fast and reliable.

Property Description Properties view

Transport/scheme Select udp.

Interface to listen
on

Tap the dropdown box to select the
interface on which you want to bind the
listener service. Select All interfaces to
tell TestExpert to accept connections
occurring on any of the installed
interfaces.

Listening port Enter the listener port number.

Property Description Properties view

Transport/Scheme Select tcp.

Interface to listen
on

Tap the dropdown to select the
interface on which you want to bind
the listener service. Select All
interfaces to tell TestExpert to
accept connections occurring on any
of the installed interfaces.

Listening port Enter the listening port number.

Message framing Select which of the 4 possible
message framing methods
TestExpert must use to detect
whether a received TCP message is
complete.

See the next Message framing
section for a description.

94

Message framing

Because TCP is a stream protocol TestExpert needs to be told what type of message
framing is expected. If it doesn’t know that it will be impossible to figure out whether a
complete message has been received.
There is no standard available in the communication protocol world for people on
how to do the message framing. As a consequence various implementations exist:
some have a length prefix, some use a tail marker, some others carry a named
length field, etc. It is impossible for TestExpert to support everything that is out there
in the world, but at least the most frequently used methods are supported. These are:

• None – Choose this if none of the next 3 methods are suitable and you are
sure that messages are not sent/received in chunks. That will work out very
often (but not always) when TestExpert and the device under test are all part
of the same local network.

• Fixed size length – Choose this when your messages have a length indicator
at a fixed position in the message whereby the length is stored as a binary
value in a fixed number of octets. You must define:

o The position, i.e. the offset in the message where the length starts (with
0 being the first octet).

o The number of octets that is used to hold the length value. If the length
spans multiple octets then TestExpert will assume that the length is
stored in big endian format.

o A possible adjustment value that TestExpert must add to the length.
If you want TestExpert to subtract this value from the retrieved length
then specify the value using a minus sign, like in:
-1

• Length indicator in a header block – Choose this method when you have a
text message where the length is defined as a ‘header’ value, like with the
Content-Length header in HTTP messages. In this case you must define 2
additional properties:

o A regexpr (regular expression) that allows TestExpert to both find the
length ‘header’ and extract the assigned length value. So you must
make sure that the regular expression not only can find the header but
also defines a sub-pattern inside a pair of parenthesis to capture the
length as a separate group. TestExpert assumes that the last captured
group holds the length.
Example: Assume that all messages carry a ‘Content-Length’ header
(like in HTTP). The regexp will then be:
Content-Length:\s+(.*?)\s+

o The End of header marker that is expected to be present in any
received message and which marks the end of all possible headers.
The marker must be defined as being 1 or more octets where each
octet is specified by means of 2 hexadecimal characters (case
insensitive).
Example: Assume that each header ends with a CR and LF character
and there is an additional CR and LF character after the last header.
The end marker must then be defined as:
0D 0A 0D 0A

• Tail marker – Choose this option when the end of the message is defined by
one or more unique octets. You must define each of the octets by means of 2

95

hexadecimal characters (case insensitive), like in:
FF FF FF FF
Note: With this method the sender must make sure that the tail marker is
unique and therefore content that is the same as the tail marker must be
escaped in some way. TestExpert doesn’t deal with this.

HTTP

Select HTTP if you have test scenario’s where TestExpert must react as a HTTP
server; i.e wait for HTTP request messages and respond with HTTP response
messages.

TestExpert’s HTTP Server/Listener

When a HTTP listener endpoint is started in a scenario TestExpert will instantiate a
small HTTP server instance. It will accept any incoming HTTP request using the
following checks:

• The method must be: GET, PUT, POST, DELETE, HEAD, OPTIONS, or
PATCH.

• The URL pathname must match the configured endpoint’s URL.

• HTTP headers must have the correct format.

• Multipart content must contain correctly formatted boundary entities.

Property Description Properties view

Transport/scheme Select http.

Interface to listen
on

Tap the dropdown to select the
interface on which you want to bind
the listener service. Select All
interfaces to tell TestExpert to
accept connections occurring on
any of the installed interfaces.

Listening port Enter the listening port number.

URL pathname Enter a pathname here which a
client device must pass in the URI
part of its HTTP request towards
TestExpert.

You can define both partially and
fully specified pathnames. A
partially specified pathname
contains a trailing ‘*’ wildcard
character.

Only requests with a matching
pathname will be passed on to a
running scenario.

96

The server will never by itself respond to an incoming request except when the above
checks fail. In that case the server will respond with a 400 Bad Request response.

The service will use the Content-Length header in the incoming request to find out
when a message is complete. When so, the request is passed on to the running
scenario which typically must react by responding with a HTTP response message.

Chunked data transfer is not supported.

97

Reference information

This part of the user’s guide covers the following topics:

Message description language

To allow the user to define different kind of messages and information elements,
TestExpert provides a small, interpreted Message Description Language. You will
need to know the syntax of this language if you want to define the different data fields
of incoming and outgoing messages when you want to define those messages in so
called ‘raw’ format.

E.g., assume you want to define a ‘raw’ outgoing message, comprising of 3 fields.

• The first field consists of a 1 byte message type.

• The second field consists of a 1 byte field type, a 2 byte length value (holding
the length of the field ‘data’), and a variable length data part.

• The third field has the same layout as the second.

TestExpert’s Message Description Language allows you to define such a message
as follows:

Field Definition

Field 1: Message type 0x01

Field 2: type 0x07

Field 2: Length @length("Device")

Field 2: name "Device"

Field 3: type 0x11

Field 3: length @length("Smith")

Field 3: name "Smith"

The payload data of the above message will be:

Topic Description

Message description
language

A detailed description of the message description language
that is available to define the payload of messages and
message information elements.

ABNF template files An explanation about the syntax of ABNF files.

98

TestExpert provides a small set of predefined data types, operators to manipulate
those types, and a set of statements and functions for performing control. You will
make use of them when defining the contents of incoming and outgoing messages
and when specifying conditions on scenario actions.

Data types

TestExpert's Message Description Language supports the following set of data types
for representing values:

• The type byte is used to represent a value occupying 8 bits (1 octet). It is the
'smallest' type.

• The type word is used to represent a value occupying 16 bits (2 octets). When
used on messages, you can choose to use the big endian or little endian
format notation.

• Type integer is used to represent a value occupying 32 bits (4 octets). When
used on messages, you can also choose to use the big endian or little endian
format notation.

• Type long is used to represent a value occupying 64 bits (8 octets). When
used on messages, you can also choose to use the big endian or little endian
format notation.

• Type string is used to represent a set of characters. The number of bytes that
each character takes is configurable; i.e. when the string encoding is set to
‘utf8’ then each character will occupy 1 byte.

• Type set is used to group a set of data values, expressions or functions
together and treat them all as a single unit.

There are a number of ways how you can specify values of the above listed data
types:

• Literals

• Strings

• Compound blocks

• @Statements

• Expressions

• Named variables

Literals

Using literals you simple specify a value as either a byte, word, integer or a long
value. Values are entered in 2 ways:

• In hexadecimal, using the C/C++/C# way of defining hexadecimal values.
Hexadecimal bytes are therefore entered by prepending 0x or 0X to a literal

integer. Both uppercase and lowercase 'A' to 'F' characters can be used.

• In decimal notation. Anything different from the '0x..' notation will be
considered as being a decimal value.

99

For specifying word, integer, and long values, there is also a 3rd method which can
force the given literal integer (having decimal notation) to be of a specific type by
appending character 'w' or 'W', ‘i’ or ‘I’, ‘l’ or ‘L’ to the literal.

E.g.:

 0x10 // hexadecimal byte
 0x0010 // hexadecimal word
 0x00000010 // hexadecimal long
 100 // decimal byte
 300 // decimal word
 80w // a word
 1L // a long

In case no type modifier ('w', 'W', 'i', 'I', 'l' or 'L') is specified, then the resulting type is
either explicitly given (e.g. 0x0010 will be a word) or implicitly (e.g. 100 will be a byte
because it can fit in 8 bits).

Strings

String values can be used to refer to a sequence of characters. They are entered
using the 'double quote' character (") as heading and trailing character. E.g.:

 "my string"
 "another, longer string"

Compound blocks

Use a compound block to specify one or more values belonging to a set.

You can construct such a set by enclosing the expressions/statements between
opening and closing brackets: '{' and '}' like in:

 {0x10 "ABC" @var(ID)}

 {0x20 0x21 0x45 "Fred" @element(connect, 0, 2560) 0x80}

TestExpert also allows you to define empty block statements: a '{' character,
immediately followed by a '}' character. You might want to use such a construct with
conditional statements to have either a set of data values or a null value.

@Statements

@Statements are reserved ‘functions’ in TestExpert that accomplish a specific
purpose, like: get the value of a variable, get the byte at the current message parser
position, etc.

All @statements start with a ‘@’ characters followed by a name, followed by an open
parenthesis, followed by 0 or more parameters, followed by a closing parenthesis.

Examples:

 @var(ID) // Get the value of variable ‘ID’
 @$(2) // Get the 2 bytes at the current parser position

100

See Statements and functions for a detailed description.

TestExpert expressions

Expressions include nearly all of the usual programming language capabilities. They
include the usual operators (! , * , / , + , - , & , | , == , < , <= , > , >= , |= , && , ||). You
can use them to build expressions, like:

 (0x20 + 0x1000),
 (@var(_variable_name) / (100 * 2)),
 etc.

Similar to other 'programming languages', expressions in TestExpert's Message
Description Language are composed of one or more operations. The evaluation of an
expression performs one or more operations, yielding a result. E.g.:

 10 * @var(var1)
 @var(var1) / 20

You can specify all operations within an expression construct but remember that
TestExpert evaluates the expression from left to right. If this is not what you want
then you have to include opening and closing parenthesis characters. E.g.:

 20 + (10 * @var(var1))

The data type of the result (a byte, word, integer, long, or string) is in general
determined by the data type of the operand(s). When more than one data type is
present, type conversion takes place when possible whereby the resulting type will
be the type of the operand with the 'biggest' type (a long is 'bigger' than a word,
which is 'bigger' than a byte). E.g.:

 (0x11223344 >> 8) results in: 0x00112233
 (0x1122 >> 8) results in: 0x0011

You can however force the value of a numeric expression result to be a byte, word,
integer, or long value by adding leading and trailing parenthesis characters and
appending the @byte, @word, @int, or @long keyword to the expression. E.g.

(assume var1 = 20):

 ((2 * 1024) + 0xFF000011)@byte, result: 0x11
 (10 + (@var(var1) | 0x80))@word, result: 0x9E
 (0x11223344 >> 8)@word, result: 0x2233
 ((@randomnum(100,255))@word, result: 0x0087
 (@var(var1) / 20)@long, result: 0x0000000000000001

The simplest form of an expression consists of a single literal constant, string, or
variable. E.g.:

 0x200
 "abc"

When using operations in expressions, all operands must have byte, word, integer, or
long as data type. The only 2 exceptions are:

1. A single decimal character string - Such a string is also allowed. E.g.:

 (0x10 + "1" + 0x20), results in a value: 0x61
 (0x10 + @left("123",1) + 0x20), results in a value: 0x61
 (0x10 + "123" + 0x20), results in an error

101

2. All operands are strings – In that case the strings are concatenated. E.g.:

 ("12" + "34"), results in a new string: "1234"

Arithmetic operations

Operations can be:

* multiplication expr * expr

/ division expr /expr

% modulus (remainder) expr % expr

+ addition expr + expr

- subtraction expr - expr

Equality, relational and logical operations

These operations evaluate to either true or false. A truth condition yields 1; a false

condition yields 0.

! logical NOT !expr

< less than expr < expr

<= less than or equal expr <= expr

> greater than expr > expr

>= greater than or equal expr >= expr

== equality expr == expr

!= inequality expr != expr

&& logical AND expr && expr

|| logical OR expr || expr

The logical NOT operator ("!") evaluates to true if its operand has a value of zero;
otherwise it evaluates to false.

Bitwise operators

Bitwise operators allow the user to test and set individual bits or bit subsets. The
operands of bitwise operators must be of an integral type.

~ bitwise NOT ~expr

<< left shift expr << count_expr

>> right shift expr <> count_expr

& bitwise AND expr & expr

102

^ bitwise XOR expr ^ expr

| bitwise OR expr | expr

Named variables

TestExpert allows you to assign values to static variables and dynamic variables. You
can get the value of those variables in 2 ways:

• Explicitly by referencing them using the @var() statement, like in:
(@var(var1) / 20)

• Implicitly by referencing them directly using their name, like in:
(var1 / 20)

The latter method only works when the use of the direct name is not in conflict with
other elements in the expression.

Statements and functions

Data types and expressions are the main constructs of TestExpert's Message
Description Language that allow the user to specify the internal bytes of incoming
and outgoing messages. Expressions however lack the possibility to a more dynamic
way of controlling the message settings.

Statements and functions will allow the user to have more control on how particular
bytes have to be set in messages and on which bytes have to be set.

Statements

@$

Octet at the current position of the message parser.

@atoi() Convert a string to a numeric value.

@element()

Insert the definition(s) of the specified message/information element.

@itoa() Convert a numeric value to a string.

@jvalue() Extract a value from a context string using a JSONPath expression.

@left()

Take leftmost part of string.

@length()

Return the length of a string.

@match() Check if a given context string contains a user specified pattern.

@right()

Take rightmost part of a string.

@rvalue() Extract a value from a context string using a regular expression.

@set()

Assign a value to a run-time variable.

103

@setparm()

Set the given parameter number.

@skip()

Skip octets.

@this.length()

Return the length of a message/element.

@this.parm()

Take the given parameter number.

@var()

Get the value of a static or runtime variable.

@xvalue() Extract a value from a context string using an XPATH expression.

@randomstr() Obtain a random string of a given length (characters are: a..zA..Z0..9).

@randomnum() Obtain a random number between a given min an max value.

Statements syntax

Throughout the next pages the following special characters are used to define the
statement syntax for defining message:

[] Identifies an optional argument. Arguments not enclosed in brackets are required.

... Indicates that you can specify multiple values for the previous argument.

|

Indicates mutually exclusive information. You can use the argument to the left of the
separator or the argument to the right of the separator. You cannot use both
arguments in a single use of the command.

{ } Delimits a set of mutually exclusive arguments when one of the arguments is
required. If the arguments are optional, they are enclosed in brackets ([]).

@$

The @$ indicator can only be used on incoming messages and represents 1 or more
octets of the received message. The location of the octets is defined by the value of
the incoming message parser position as it is at the moment that the @$ statement is

encountered.
You can use this indicator when you want to assign a byte, word, integer, long or
string value from a received message to a run-time variable, or when you want to
assign an array of bytes to a run-time variable.

Syntax

1. @$

This syntax represents the byte value of the one octet at the current parser position in
the message.

2. @$(int count)

This syntax takes as many octets, starting from the current parser position, as
indicated by parameter count. The expression must result in a positive numeric value.

104

When used in a @set statement without any type override, the value of the run-time

variable is set to an array of bytes, that is filled with the octets from the message.

Example

Assume that the content of an incoming message is defined as follows:

Field Definition

Assign first (unknown) byte to
'rcvdByte' and then skip it

@set(rcvdByte, @$) @skip(1)

Next data: "ABC" "ABC"

Assign next 4 octets to 'rcvdInt'
and then skip/ignore them

@set(rcvdInt, @$(4), @int) @skip(4)

Next octet is expected to hold a
number; save it in ‘rcvdCount’

@set(rcvdCount, @$)

Skip the count octet @skip(1)

Assign the next ‘rcvdCount’
number of octets to 'rcvdLong'

@set(rcvdLong, @$(@var(rcvdCount), @long))

Skip the octets @skip(@var(rcvdCount))

Assign the next 6 octets to the
'rcvdData' array

@set(rcvdData, @$(6)

Then: skip these 6 octets @skip(6)

Assuming an incoming message with the following contents:

0x10 0x41 0x42 0x43 0x07 0xCC 0x33 0x11
0x03 0x11 0x22 0x33 0x01 0x02 0x03 0x04
0x05 0x06

When applied against the above definition, the following run-time variables will be
created:

• 'rcvdByte' - its value will be 0x10

• 'rcvdInt' - its value will be 0x07CC3311

• 'rcvdCount' - the value will be set to 0x03

• 'rcvdLong' - 3 octets will be taken to form 0x0000000000112233 as a long
value

• 'rvcdData' - this is an array with contents: 0x01 0x02 0x03 0x04 0x05 0x06

@set

The @set statement allows you to initialize a given run-time variable with an

appropriate value. In case the run-time variable hasn't been created before
TestExpert will create it.

105

Syntax

@set(string name, mdlDataType setValue[, typeOverride])

Parameter name defines the name of the runtime variable. It can be any new or
already existing name in the list of run-time variables.

Parameter setValue defines the value that must be assigned to the runtime variable.
The resulting value can be: a byte, a word, an integer, a long, a string, a compound
block, or an array of bytes.

Parameter typeOverride is optional. Acceptable type overrides are: @word, @int,
@long, and @string. When provided the value that results from setValue will be
converted to the indicated type. With the conversion to word, integer, or long
TestExpert takes the configured endianness into account.

Example

Assume the following incoming message definition:

field definition

field1 "12345"

field2: 0x84 0x84

field3: 32 bit ID @set(id, @$(4), @int) @skip(4)

field4: 0x44 0x44

Field5: 32 bit KEY @set(key, @$(4)) @skip(4)

other (if any) @skip(*)

When the specified message is being received, then 2 runtime variables will be
created: ‘id’ and ‘key’.
Note the difference between the @set statement in field 3 and 5. Both statements
save 4 bytes. However, the first statement really saves the 4 bytes in integer format
(e.g. 0x00001122) whereas the second statement saves the 4 bytes one after each
other (e.g. 0x11 0x22 0x33 0x44).

@element

The @element statement allows you to insert a Message element into a message

that is defined using the Raw message editor or into another Message element. It is
an essential feature allowing you to reuse predefined element specifications within
multiple scenario messages.

When you insert a message element you actually only insert a reference to the
element at a given location of a message or an element of a message. TestExpert
will do the real insertion at the moment an outgoing message must be sent out, or an
incoming message must be verified, or when you want to check whether a message
definition is correct.

106

Compared with filling out all the message contents yourself, importing has the
advantage that you can reuse message definitions which are global to a given
project. This is the recommended way of working because it will allow you to manage
common messages and items at one place for different scenarios.

Syntax

@element(string pathName[, mdlDataType parm]...)

Insert the message element indicated by pathName. This is a folder-like path string
formatted as follows:

 "groupName[/folderName]/elementName"

Where:

• groupName – One of the 2 supported message elements groups.
1. ome - This group contains all outgoing message elements. You will

store here all the reusable message elements that you want to import in
other outgoing elements or messages.

2. ime - This group contains all incoming message elements. You will
store here all the reusable message elements that you want to import in
other incoming elements or messages.

• folderName - One or more folder names defining the parent(s) of the element.
• elementName - The name of the referenced element.

In case you have to deal with a parameterized element then the statement lets you
specify as many parm values as necessary. You can make use of any of the
supported value definitions when passing a parameter; i.e. literals, strings,
@statements, compound blocks, and expressions.

Example 1 - Simple

The simplest way how a user would specify this in a message, looks as follows:

Field Definition

field1 0x22

Include
staticUserName

@element("ome/staticUserName")

next field "1234"

When you run the scenario, or verify the message, TestExpert will read all the
definitions from the referenced element and put them in the output message behind
possible other definitions that have been specified using the normal straight syntax.

E.g.: Assume that 'staticUserName' in the above example defines an outgoing
information element that looks as follows:

Field Definition

Byte 0x01

107

String "John.Doe"

End marker 0x00

The above example would then produce the following message content:

000 22 01 4A 6F 68 6E 2E 44 " John.D
008 6F 65 00 31 32 33 34 oe 1234

Example 2 – Parameterized elements

Assume we have 2 parameterized information elements: 'userName' and ‘userData’.
They look as follows:

userName:

Field Definition

Field type 0x01

String @this.parm(1)

End marker 0x00

userData:

Field Definition

Field type 0x02

User data
length

@len(@this.parm(1))

User data @this.parm(1)

Both elements are included in the following message:

Field Definition

field1 0x22

import a info field @element("ome/userName", "Pete.Smith")

next field "1234"

import with a block parameter @element("ome/userData", {0x10 0x77})

End of message 0xFF

The payload of this messages will then be:

000 22 01 50 65 74 65 2E 53 " Pete.S
008 6D 69 74 68 00 31 32 33 mith 123
010 34 4

108

@this.parm

The @this.parm statement can be used inside Message elements to get the value of

a parameter that is assumed to have been set in the message/element that includes
this element.

Syntax

@this.parm(int parmNumber)

The statement requires an argument parmNumber that indicates which of the
possible multiple parameters has to be taken. Parameter numbers can be: 1, 2, etc.

parmNumber can be a fixed number, a @var value, or an expression that results in a

non-zero, positive numeric value.

Example

Assume the following message element, called ‘2Parms’

Field Definition

field1 0x22

field2 (input argument 1) @this.parm(1)

field3 0x1122

field4 (input argument 2) (0x8000 + @this.parm(2))

field6 0xFF 0x00

The message that includes the above information element is defined as follows:

field definition

Include 2Parms
element

@element("ome/2Parms", "ABC", (20 + 10))

The resulting payload of the message will be (number encoding: big endian):

000 22 41 42 43 11 22 80 1E "ABC "
008 FF 00

@this.length

The @this.length statement gets the length in bytes of the message or the element

within which the statement appears.

You can use the statement both in an expression and to put the length within the
message/element itself. In the latter case the length is stored as a byte value. If you
want it different then you must add one of the type override statements: @word,
@int, or @long.

109

Syntax

@this.length()

The statement doesn’t require any argument.

Example

Assume the following outgoing message element, called ‘Section02’

Field Definition

Section id 0x02

Section length @this.length()

field1 0x22

Field2 0x1122

The message that includes the above information element is defined as follows:

field definition

Length (@this.length())@word

Include Section02
element

@element("ome/Section02")

Tail marker 0xFF

The resulting payload of the message will be (number encoding: big endian):

000 00 08 02 05 22 11 22 FF

@setparm

The @setparm() statement allows you to specify an argument that is to be passed

through when importing contents from a message information element using the

@element() statement. The imported message will reference such argument by

means of the @this.parm() statement.

This statement is an alternative method for setting a parameter. The usual way to
pass a parameter is to specify its value with the @element statement itself.

Syntax

@setparm(int argumentNumber, mdlDataType value)

You can set the value of a given input argument by specifying the @setparm

keyword, followed by an argumentNumber and the value of the parameter between
parenthesis.

110

ArgumentNumber must be a non-zero positive numeric value and denotes the 1st, the
2nd, etc. parameter of the element to be included.

You can make use of any of the supported value definitions when passing value; i.e.
literals, strings, @statements, compound blocks, and expressions.

Example

Assume a message element called 'ie_with_3_arguments' that defines the following
content:

field definition

field1 0x22

field2 (input argument 1) @this.parm(1)

field3 0x1122

field4 (input argument 3) @this.parm(3)

field5 (input argument 2) @this.parm(2)

field6 "ieEND"

Take then the following definition for a message 'MSG':

field definition

message id 0x2000

A @setparm(1, "ABC")

A @setparm(2, 0)

A @setparm(3, "abc")

import info element @element(ie_with_3_arguments)

This will result in the following content being defined for 'MSG':

@skip

The @skip statement, typically used when defining incoming messages or

information elements, allows you to ignore (skip) as many octets in the message as
given by the expression which is given as parameter of the statement. You will use
this when you don't know beforehand the actual values in a given part of an incoming
messages and therefore want to tell TestExpert to ignore these values.

111

Syntax

@skip([int count|*])

The statement begins with the @skip keyword, followed by parameter count in

parenthesis which indicates how many bytes have to be skipped.

In case you don't provide a value, then the count will be set to 1. E.g.: @skip().

The @skip(*) statement can be used in the definition of an incoming message to

tell the system that any further bytes in the parsed message must not be looked at
anymore.
It is typically used when only the heading information fields of an incoming message
must match with a given definition whereas the contents of the remaining, trailing
fields is not important.

When specified, the @skip(*) statement must be the last statement in the

message/element definition. Note however that the provision of this statement in a
pattern message doesn't necessarily means that the validated message always
needs to have one or more bytes at the given point that have to be ignored. The

message can very well stop at the field that precedes the @skip(*) field. The

@skip(*) statement skips the remainder of the message if there are any message

bytes left.

Example

Assume a received message, starting with a 5 character string "begin", followed by

5 undefined octets, followed again by a 3 character string "end". An incoming

TestExpert message that matches such a message would be the following:

field definition

string 1 "begin"

5 undefined octets @skip(5)

string 2 "end"

@length

This statement returns the length of a given item. The length is returned as a numeric
value of type integer (4 bytes), but you can change that by adding one of the
supported 'type-override' statements: @byte, @word, @long.

The calculated length refers to the number of octets that the item will have when
used in the payload of a message. In case the item refers to a string then the length
of the string will be the number of characters in the string.

Syntax

@length(mdlDataType item)

112

The input parameter item can be any type of item: a literal, a string, a compound
block, a value returned by a @statement, or an expression.

Examples

Field Definition

A string.
Length: 4

@length("1234")

A block.
Length: 7

@length({0x01 "1234" 0x1122})

A variable.
(myVariable = 0x1020 0x30)
Length: 3

@length(myVariable)

With type override
Length: 0x0003

@length(myVariable)@word

@left

The @left statement returns a string containing a specified number of characters
from the left side of a string.

Syntax

@left(string inpStr, int count)

@right

The @right statement returns a string containing a specified number of characters
from the right side of a string.

Syntax

@right(string inpStr, int count)

@var

The @var statement returns the value of a specified variable. When TestExpert
encounters this statement it tries to locate the variable in the list of Runtime variables.
If it isn’t there then the list of Static variables is looked up.

Syntax

@var(string varName)

113

Example

@var(rcvdCount)

@atoi

The @atoi statement parses a string, interpreting its content as an integral number,
and returns a value of type integer.

Syntax

@atoi(string inpStr)

@itoa

The @itoa statement converts an integer to a string.

Syntax

@itoa(int inpValue)

@match

This statement checks if there is a match between a user defined pattern and a given

context string. It is primarily used in incoming message payload definitions to check if

the character(s) at a given position in the payload of a received message can be

accepted as being valid.

Syntax

@match(string regexPattern)

Parameter patternStr is a character/pattern string that contains a regular expression.

Example 1

@match(".*(?=\r)")

Matches all characters until a CR (0x0D) character is encountered.

Example 2

In case you want to have a double quote character in your regular expression value

don’t forget to escape the double quote, like in:

Note: You can also write the name of the variable between double quotes like in:
@var("rcvdCount")

114

@match("'|\"")

This matches a single quote character or a double quote character.

@rvalue

This statement uses a regular expression pattern to extract one or more parts from a

context specific input string (e.g. a string or substring that sits in the content part of

an incoming text message).

Syntax

@rvalue(string regexPattern)

Parameter regexPatternStr is a regular expression pattern that is used to find one or
more matching parts. You can define patterns with or without “capturing groups”.

• In the first case the first matching string is extracted.

• With 1 or more capturing groups (each group is specified as a sub-pattern
between a pair of parenthesis) the string captured in the last group is
extracted.

Examples

Assume an input string containing "100 Bananas".
The statement @rvalue("[0-9]+") then extracts: "100".

Assume an input string containing "From: john@marshal.com".
The statement @rvalue("From:\s(.*)@(.*)") then extracts: "marshal.com".

@xvalue

The @xvalue statement extracts user-defined data from a context specific XML

string (e.g. the XML document that sits in the content part of an incoming text

message).

Syntax

@xvalue(string xPath)

Parameter xPathStr contains an XML Path Language (XPath) expression. Such

expression uses a path notation, like those used in URLs, for addressing parts of an

XML document. The expression is evaluated to yield a single string value (if there is

only 1 result) or block value containing multiple strings (if there are multiple matches).

For example, the expression book/author will return a block of strings of the

Note: TestExpert uses the .NET regex engine.

115

<author> elements contained in the <book> elements, if such elements are

declared in the source XML document.

In addition, an XPath expression can have predicates (filter expressions) or function

calls. For example, the expression book[@type="Fiction"] refers to the <book>

elements whose type attribute is set to "Fiction".

Examples

@xvalue("/bookstore/book[1]/title")

Returns the title of the first book in the bookstore. Note: Indexes start at 1.

@xvalue("/bookstore/book[@var(bookIndex)]/title")

Returns the title of the book that is located in the bookstore at the index defined by
variable ‘bookIndex’.

@xvalue("/bookstore/book/title")

Returns a block of strings containing all the book titles.

@jvalue

The @jvalue statement extracts user-specified data from a context specific string

that contains a JSON structure.

Syntax

@jvalue(string jsonPath)

Parameter jsonPathStr contains a JSONPath expression string. Such expression
looks like XPATH but use the dot-notation and/or bracket-notation for input paths.

Example

@jvalue("$.store.book[" + @var(bookIndex) + "].title")

@randomstr

The @randomstr statement generates a random string with a length that is defined

as argument. The string contains a combination of upper and lowercase A..Z

characters and numeric characters 0..9.

Syntax

@randomstr(int length)

Parameter length specifies the length of the random string that is being returned.

116

Example

@randomstr(5) - Returns "Oij1K"

@randomnum

The @randomnum statement produces a random number that lies within a specified

range. The statement returns the number as a 32 bit value.

Syntax

@randomstr(int minValue, int maxValue)

Parameter minValue specifies the inclusive lower bound of the produced number.

Parameter maxValue specifies the exclusive upper bound of the produced number. It
must be greater than or equal to minValue and smaller then 2147483647.

Example

@randomnum(5, 1000) - Returns 0x002000fA
(@randomnum(5, 500))@word - Returns 0x015C

117

ABNF template files

A correctly formatted ABNF file

There are some things you should know about what constitutes a valid ABNF file.

• TestExpert’s ABNF file parser is compliant with the rule definitions and
encoding that is laid out in RFC5234.

• Comments start with a semicolon «;».

• When the semicolon is at the start of a line, is followed by one or more
whitespace characters, and then starts with a «!» character, then this will be
interpreted as an option for the TestExpert ABNF message editor. Options are
typically located at the beginning of the file.

• When the semicolon is not positioned at the start of a line (e.g. after a rule
definition or indented on the next line) then the comment will be attached to
the rule that precedes the semicolon.

ABNF message editor options

!show(RuleName1,RuleName2, ..)

When you include this option in the abnf file then the ABNF message editor will limit
the set of rules that you can select, to only those defined in the list of rule names.

Assume the following abnf template file:

; !name("SimpleIOT simple-iot.abnf")
; !syntax("abnf")
; !import("core-abnf.abnf")
; !show(request,response)

request = (switch-on / switch-off / "Status" / "Reset") EOM
response = (ok / "INVALID") EOM
switch-on = "SwitchOn" ":" OWS device-id
switch-off = "SwitchOff" ":" OWS device-id
device-id = <?> ; Valid id's: 0..9
ok = ("OK" [CRLF message-body])
message-body = <??> ; The message body (if any) is used to carry the
 ; payload of a response.
EOM = %xFF
OWS = <@def: " ", @match("\s*")> ; Optional whitespace = *(SP / HTAB)
 ; Outgoing: single SP character
 ; Incoming: 0 or more SP|HTAB chars

The ‘Template rule’ dropdown menu will in this case only list the rules «request» and
«response».

118

TestExpert specific prose-val commands

<?>

This command instructs TestExpert to present a single-line text box to the user for
defining the content of the element. It is not absolutely necessary to make use of this
because TestExpert will as a default always show a single-line text box when the
element's content cannot be derived from a rule, i.e. when there is no definition for
the rule in the ABNF file.

<??>

This command instructs TestExpert to present a multi-line text box to the user for
defining the content of the element. This command thus allows you to overrule the
default single-line text box presentation.

<@def: out-def, in-def>

The @def command allows you to pre-define a different value depending on whether
the element is used in an outgoing context or an incoming context. A typical example
where you would want to make that difference is for an element where you would
want TestExpert to output for instance a single SPACE character but where
TestExpert must allow zero or more space characters when incoming.

• 'out-def' must be a string (surrounded by double quotes).

• 'in-def' can be either a string (surrounded by double quotes) or the function
regexpr(pattern) where 'pattern' defines the regular expression pattern for
matching the character(s) that are accepted when TestExpert is validating the
element for an incoming message.

Examples

<@def: " ", regexpr(\s*)> - With an outgoing element output a single SPACE

character (0x20). With an incoming message accept zero or more whitespace
characters (SPACE, HTAB).

Things you should be aware of

If you have rules that define multiple alternative elements then you have to be careful
when you modify such rules; i.e. add or delete elements. When you have messages
that use such a rule and you have told TestExpert to use a specific element from the
rule's alternatives list TestExpert will save the selected element index in the solution
file. The index is then later on used to present the correct element data to the user.
That might lead to problems when you later on add or delete elements in the ABNF
file. If you don't want to re-edit the message elements you should not delete
alternatives and always add new alternatives at the end of the list.

Similar issues can come up when you have layed out a message definition for a
Group in a solution file and the ABNF template later on comes with a modified group

119

definition. Depending on what type of change has occurred in the ABNF group the
new/updated elements might not show correctly.
You should then temporarily change the definition mode to Edit Mode and then back
to Template Mode.

Example template file

This example is for a small text protocol that can manage switches and sensors in a
home control environment. There are 2 type of messages: requests and responses.

• Requests can be: “SwitchOn”, “SwitchOff”, “Status”, and “Reset”. The first 2 of
those requests come with a parameter to indicate the device id (a number).

• Responses can be “OK” and “INVALID”. The “OK” response carries an
additional body parameter containing a json object string. The json object
contains the result of the request that has invoked the “OK” response.

Transport must be possible over TCP and so the 2 messages are terminated by
means of a trailing 0xFF character.

Some message examples (the 0xFF EOM marker is not shown):

Requests:

SwitchOn: 2

SwitchOff: 1

Reset

Responses

INVALID

OK\r\n
{
 "id": 2,
 "name": "switch",
 "location": "living room",
 "status": "on"
}

This gives the following ABNF template file:

; !name("SimpleIOT simple-iot.abnf")
; !syntax("abnf")
; !import("core-abnf.abnf")

message = (request / response) EOM
request = switch-on / switch-off / "Status" / "Reset"
response = ok / "INVALID"

120

switch-on = "SwitchOn" ":" OWS device-id
switch-off = "SwitchOff" ":" OWS device-id
device-id = <?> ; Valid id's: 0..9
ok = ("OK" [CRLF message-body])
message-body = <??> ; The message body (if any) is used to carry the
 ; payload of a response.
EOM = %xFF
OWS = <@def: " ", @match("\s*")> ; Optional whitespace = *(SP / HTAB)
 ; Outgoing: single SP character
 ; Incoming: 0 or more SP|HTAB chars

Possible body message:

{
 "devices": [
 {
 "id": 1,
 "name": "switch",
 "location": "living room",
 "status": "off"
 },
 {
 "id": 2,
 "name": "switch",
 "location": "kitchen",
 "status": "on"
 }
],
 "status": "active"
}

121

Things you should know

Including and accessing files

TestExpert, being a Universal Windows Program (UWP), only allows you to include a
file (like a solution file, an ABNF template file, or a content file to be included in the
body of a HTTP message) by explicitly asking you to select the file from a folder on
your system.

A file added to the solution in this way is kept in a so-called Future Access List, which
allows later on to access the file without the user asking again to select it.

This works perfectly as long as your solution file (which contains references to this
Future Access List) is not copied to another machine and used there by another
TestExpert app.
The other TestExpert app will not be able to access the files (even when you copy
them over) and will show this through a suitable dialog message like the one below.

